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Vorwort

An alle Leserinnen und Leser: Ihr konnt dieses Skriptum gerne (kostenlos) Kolle-
ginnen und Kollegen zur Verfiigung stellen.

E-Mail: csteiner@grg21.ac.at

Ich mochte noch einmal betonen, dass dieses Skriptum keine Anspruch auf Vollstan-
digkeit oder Richtigkeit erhebt, ich habe es nach meinem Wissen erstellt und gemein-
sam mit Prof. Bertlmann korrigiert. Es entspricht an einigen Stellen nicht exakt der
Tafelmitschrift aus der Vorlesung.

Die Bilder stammen teilweise aus dem T2-Skriptum von Prof. Bertlmann[l dort
sind zu einigen Bildern auch externe Quellenangaben zu finden. Einige weitere Bilder
habe ich selbst erstellt. Alle anderen Bilder sind Eigentum ihrer Besitzer.
Anmerkung zur Version 3.0: Diese Version ist die letzte, Prof. Bertlmann hat sie
auf Fehler durchgelesen und korrigiert. Sollten nicht noch ernstzunehmende Fehler
auftauchen, betrachte ich das Skriptum als abgeschlossen. Zu dem Skriptum gibt es
drei Anhéange zu den beiden Vortriagen iiber EPR und Relativitatstheorie.

IBertlmann, Reinhold A.: Friis, Nicolai - Theoretical Physics T2 Quantum Mechanics. Course of Lectures by Rein-
hold A. Bertlmann. T2-Script of Sommersemester 2008.
https://www.univie.ac.at/physikwiki/index.php/Datei:T2_Skript_final.pdf, 02.02.2012

Vorwort
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. Welle Teilchen Dualitat

I.1. Planck’sches Strahlungsgesetz, Hohlraum Strahlung

4.10.2011

Historisch gesehen beginnt die Quantenmechanik 1900.

Planck’s Entdeckung:

Die Energie ist der Frequenz proportional!

i

(.1

Hohlraum Strahlung:

Die Energiedichte der austretetnden Strahlung
wird in Abhéngigkeit der Kreisfrequenz gemes-
sen, schon vor Planck wurden zwei GesetzmaBig-
keiten entdeckt.

fur kleine Frequenzen: von Reighley und Jeans

B

kT
uw) = - w? (1.2)

Abbildung I.1.: Hohlraumstrahlung

Diese Beschreibung gilt nur fiir kleine Frequen-
zen, bei @ — «~ kommt es zur sogenannten 'UV-
Katastrophe’.

O = 2TTY ettt e Kreisfrequenz (oft Frequenz genannt)

Y= % ........................................................................................ Frequenz

T Schwingungsdauer

Cm Y et Lichtgeschwindigkeit

e Wellenlinge

h= % =1,054-10"27 ergs ~ 1073* Js ... Planck’sches Wirkungsquantum
h=6,626-10"27 ergs

Terg=0,1uT =0,1-1070 kgms 2 ... . o i Einheit fiir die Energie

L A Temperatur des Hohlraums

k=1,38-10710 ergK ! ... Boltzmann-Konstante

% kT =E .. . Aquipartitionstheorem, thermodynamische Energie fiir jeden Freiheitsgrad
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fr groBe Frequenzen: empirisches Gesetz von Wien:
[0]
u(w) » A-w’e 81 (1.3)
1e-23 p T T T T T .
[ ——— Rayleigh-Jeans |
i — Wien 1
1e-24 = ——— Planck -
1e-25 |
&
e le-26 |
=
2
=
&
e 18-27 |
@
le-26 p
1e-29 [ ]
1e-30 - - _— :
1e+08 1e+09
Frequency [Hz]
Planck untersuchte den Bereich in der Mitte.
Interpolation von Planck:
) 3 . . . .
u(w) == _o 1 (— 1 im Nenner stort bei gro3en @ nicht)
T _
00 o’ _ kT 2
u((l)) T e 2m14.8-1 7 1% o
= Planck-Gesetz:
h w?
u(®)=—— —— (L4)
X

kT hat die Einheit einer Energie (ist die klassische Energie eines idealen Gases)

= EFE=hw

5.10.2011

B B empirisch bestimmte Konstanten

1. Welle Teilchen Dualitét
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Einschub: Nobelpreise Physik 2011:

S. Perlmutter, USA; B. P. Schmidt, Australien; A. Riess, USA fiir ’accelerated expansi-
on of our universe by observation’ - haben ca. 50 weit entfernte Supanovas beobachtet
und damit die beschleunigte Ausdehnung des Universums untersucht und gezeigt.

Big Bang = Hintergrundstrahlung ~ 3K

Einstein: Allgemeine Relativitdtstheorie (ART): Gleichungen zwischen Geometrie
und Materie (Geometry «» Matter, Krimmungstensor 7),, <+ Masse M)

Hier fehlt der Rest des Einschubs zum Nobelpreis, den ich auch nicht
mehr einfiigen werde.

Folgen der Strahlungsformel:
1. Apax - T = const. = 0,29 cmK ... Wien’sches Verschiebungsgesetz

2. Strahlungsleistung:

o 4 o (hw)3 4 o 3
/ u(@)do = ?2 (%) T’ T/ (hZT) d(%) - 2k3 3/ );Ccdxl T
0 e 0 efr —1 w2 c3h” Jo e¥ —
=X nachschlagen: %
= / uw@)do = ——- 4| - Stefan-Boltzmann-Gesetz (L5)
0 15¢3h
3. u(w) 3" @? - Gesetz von Reighley-Jeans
4. u(w) “=” w2 Bt - Gesetz von Wien
I.2. Photoelektrischer Effekt
H. Hertz entdeckte 1887 folgendes Phénomen:
Metalloberfliche sendet ¢~ aus, wenn mit
UV-Licht bestrahlt! kurzwelliges
1. kinetische Energie der ¢~ ist unabhén- @ ® @
gig von der Intensitét des Lichts « . |
2. kinetische Energie der ¢~ nimmt mit ’,’I ,,’I
der Frequenz des Lichtes zu ) S
3. d Grenzfrequenz, unterhalb der keine o9 900%00 00 @ @ g
e~ mehr ausgesandt werden 9 9 9 9 °

Abbildung 1.2.: Photoelektrischer Effekt

1. Welle Teilchen Dualitét
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1905 Photonenhypothese von Einstein:

Licht besteht aus Energiequanten, genannt

Photonen! (Nobelpreis 1921)

(Name 'Photonen’ nicht von Einstein, sondern von unbekanntem Chemiker verwen-
det - von allen iitbernommen)

E=h o (1.6)
Photoelektrische Formel:
mvz
Ek,-,,zT:h-w—W (1.7)

Ejin(Energie des ¢ ) < hwo(Energie des Photons)

aus der photoelektrischen Formel folgen dann 1., 2. und 3. von oben

= =

zu 3. - Grenzfrequenz: fiir E;;, — 0 ergibt sich damit die Grenzfrequenz: | @y =

6.10.2011

Experiment zum Photoelektrischen Effekt - Millikan (1916):

UV light collector

Galvanometer

photo-kathode —I_

w
h

Theorie: eUy = E;;j, =ho—W — 0= wy = %+ (Grenzfrequenz)
experimentell: = wy, W,/ aus Daten ablesbar (erste sehr genaue Bestimmung von #)
Austrittsarbeit W fiir gdngige Metalle alle in Grof3enordnungen von 2 —5 eV (Ver-
gleich: Ionisierungsenergie in Wasserstoff-Atom ca. 13,6 eV)

B Austrittsarbeit (Materialkonstante)

1. Welle Teilchen Dualitét




Theoretische Physik L2 - Prof. Bertlmann 9

9. VD

(el )

Licht - Photonen Zusammenfassung:
l. E=ho

2. ¢=2,88...-10'9 cm sec™!

3. Ausbreitungsrichtung durch Wellenzahlvektor k gegeben: k = |7€] = Z;L—”

erinnern an SRT = Aussage iiber Impuls und
Masse des Photons:
Energie: E = /p2c? + m2c*, Geschwindigkeit: v =

) .
g—g:\/ﬁ,wennv%c :>!dam1t

fiir die Energie des Photons: =
QM + SRT: QM und SRT verbinden: o = E =
pc = p@ weil ¢ = 2, damit kann man o auf bei-

den Seite weglassen und es ergibt sich: ,
P =nk
Teilchen - Welle: |E = hiw, p = hk

H

o1t
=)

Abbildung 1.3.: Wellenzahlvektor k

1. Welle Teilchen Dualitét
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1.3. Compton-Effekt

Compton, Experiment 1922, Nobelpreis 1927
Streuung von Photonen an ruhenden Elektronen

scattered
electron

incident photon

AANANNAN  Ja
VAVAVAVAVATAVAVIR

Streuprozess, es gilt Erhaltung von Energie und Impuls

Energi : 2 = ha
nergieerhaltung: 7w+ mc ho'+ E

/R tmict

Impulserhaltung: 7k = ik’ + (k' = [k|- [K'| - cos @ = |k| - |K'] - cos ©)

h 0
nach Auswertung: [AAL =A'— A = 47— sin® 5| Compton-Formel
mc

Resultat: gestreutes Photon — groflere Wellenléinge wegen Energieabgabe an e~
Compton-Wellenldnge: 1.= - =380-10"!! cm

Intensitéat von Photonen, Réntgenlicht mit Molybdéan-Anoden:

.4. Bohr’s These

11.10.2011
Quantisierung der Energiezustdnde von Atomen.
Fragen:

e Warum ergibt sich ein diskretes Linienspektrum?

e Warum fallen die Elektronen nicht in den Kern?

1. Welle Teilchen Dualitét
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=P p=i5° \
y G’f’ P _
E“/: = T - Eizghv"k flnf.
S| A o — 2
5| i S =~ f
| 4! = o . \
T = 4 -
Fiy £ £, zhy n=13
N ] 1
070 T ob _ g \ v
wavelength (A) wavelength (A) Ez = Eﬂlﬂ' ! n= 2
$=90° p=135° 3 hv
| A i | 2 v Eq = fhv ns
5 7h il L A ! v
Bl MmN =l 211 Ep= zhv n=0
‘i Y I
7 P T A R
B R i*l il T A \/
0.70 N 0.70 0.75
wavelength (&) wavelength (&) ra Atomabstand r
Abbildung 1.4.: Intensitidt von Photonen Abbildung 1.5.: Energieniveaus

Bohr’s Quantenpostulat (1913):

Nobelpreis 1922
Die Elektronen im Atom konnen nur diskrete Energiewerte einnehmen und beim
Ubergang von einem Energiewert zum anderen wird ein Photon mit der Frequenz

1 .
0= %(En —E,,) | ausgestrahlt oder absorbiert.

B oo e stabiler Grundzustand

Bohr’sches Atommodell ('Babymodell’ - aus historischen Griinden):

Die stationdren Zustidnde sind jene, wo die klassische Bahn eine Quantisierungsbe-
dingung erfiillt.

Wirkungsintegral:

j{pdq:nh g

Bohr: Atome auf Kreisbahnen ('wie die Planeten um die Sonne’), Sommerfeld er-
weitert das Modell (Ellipsenbahnen, ...)

1 1
Bohr’s Modell konnte das Spektrum des H-Atoms ’erkléren’: | i0o = Ry ( — ——3)
~—~— N m
const. .
fixiert

n... Nummer der Spektrallinie-Serie, benannt nach den Entdeckern, z.B. n =1
Lyman-Serie, n = 2 Balmer-Serie, n = 3 Paschen-Serie

72O Impuls
7 PP Weg
n=1273,...€Z"

1. Welle Teilchen Dualitét
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Ry, . 2met -1
m= Re =2m ’ZTeC =109737,3 cm
Kernfix

Bohr’s Atommodell ist FALSCH, es erklért nicht das Energiespektrum mit L = 0.

Komplementaritatsprinzip:

Bohr: Welle und Teilchen sind komplementér zueinander. Ein System zeigt entweder
Wellen- oder Teilcheneigenschaften (je nachdem, was man betrachtet - abhéngig von
der Messapperatur).

Welle und Teilchen sind 2 Aspekte in der Beschreibung von physikalischen Phéno-
menen, die komplementér sind.

Welle und Teilchen sind nicht gleichzeitig messbar (dhnlich wie ’Ort und Impuls’ und
’Energie und Zeit’).

Bohr’sches Korrespondenzprinzip:

Geht man zu sehr hohen Anregungen (grofle Quantenzahlen n) uber, so gehen die
Quantengesetze in die Klassischen tiber ('n — « entspricht 2 — 0’).

Kopenhagener Interpretation der QM:

Gibt an, wie der mathematische Formalismus physikalisch zu interpretieren ist. Ver-
treter: Bohr, Heisenberg, Pauli, Born, ...; Gegner: Einstein, Schrodinger

1.5. Welleneigenschaften der Materie

de Broglie Thesen:

1923, Nobelpreis 1929
Teilchen haben auch Welleneigenschaften

Teilchen |[E=ho=hv| Welle

h
=kh=—
P p)
Ordnet Materie Wellenldngen zu, 'Materiewellen’:
A - h h
de Broglie — my - \/m

— Schrodinger y-Funktion — Born Interpretation

A o N d
deBroglie N ,
Abstandv. Kristallgitter

1. Welle Teilchen Dualitét
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1.6. Beugung von Elektronen am Kristall

a)
Electron Source

.
.

= konstruktive Interferenz, sinp =% = |dsinp =n-1

4> Detector

—a

dsing
® ° o—

A

d

Elektron mit bestimmter Energie auf Kristall geschickt, Experiment von Davison,
Germer, Thomson 1927 (Nobelpreis 1937).

1.7. Heisenberg’sche Unscharferelation

12.10.2011

Licht

konstruktive ’<7
Interferenz

A X

Abbildung 1.6.: Konstruktive Interferenz

Warum - Erklarung mit Heisenberg-Mikroskop:

Veranschaulichung mittels Heisenberg-
Mikroskop. -
konstruktive Interferenz, Ax ist
der kleinste Abstand fiir Auflésungs-
vermogen
: A A
sin@ = = = [Ax = Sing
Wenn A klein wird (sin¢ = const.),
dann wird Ax beliebig klein?

JA, aber Hetsepbers geht nur auf Kosten der
Impulsinformation!

Am Schirm wird das gestreute Photon registriert. Richtung des gestreuten Photons
ist unbestimmt innerhalb einer Offnung mit dem Winkel ¢. Daher ist der Riicksto-

O = 1,2,3, .t A o de Brogile-Wellenlinge

1. Welle Teilchen Dualitét




Theoretische Physik L2 - Prof. Bertlmann 14

Bimpuls des Elektrons unbestimmt (‘unscharf’), das heif3t die Impulswerte liegen in-
nerhalb von einem Intervall Ap.

_ ) h . -
Apy = Apfhoton = PPhoton* SINP =| = -sin@ = Ap{
U A

_#L—h
g =hk="

=[Ax-Ap~h (L8)

- Unscharferelation zwischen Ort und Impuls
von Heisenberg (1927, Nobelpreis: 1932)

: Im quantenmechanischen Formalismus: Zu-
stand des Elektrons — Wellenfunktion; Orts-

, Impulsmessung — Operator (zwischen ih-

nen wird Erwartungswert ausgerechnet); UR.:

-
-

Ax-Ap > g , '= bei GauB-Wellenfunktion (fiur

Scattered Oy 7 A harmonischen Oszillator)
E]h”:nli i ~ el g o
|r'l = J."‘. '\"'_ (- * . . .
W | I“f Seattered ¢= Satz: Wann immer es genaue Ortsmessungen

o= initially % -’-’;, - gibt, ist die Information iiber den Impuls *un-

at rest et scharf’ (ungenau) und umgekehrt!
. A Das gilt prinzipiell (keine Ungenauigkeit von

Messinstrumenten)!

‘..:: Incident photon

L Y

2 By = lll.l'.'.."
Komplementaritat: Ort x und Impuls p sind

o o ' komplementédr (im Sinne von Bohr), beides x
und p ist nicht beliebig genau messbar (gleich-
Abbildung I.7.: Heisenberg-Mikroskop ~ zeitig).

Energie-Zeit Unscharferelation:

Es gibt Unschirfe zwischen Dauer Ar eines physikalischen Vorgangs und der Genau-
igkeit der Energiemessung AE.

Teilchen wird Wellenpaket zugeordnet, Az...
wie lange das Wellenpaket braucht, um an ei-
nem bestimmten Ort vorbeizukommen. Man
betrachtet nun ein freies Teilchen - frei bewe-
gendes Wellenpaket:

Messgerit

2
Energie: E;;, = é’—m = Variation |AE :§-Ap

(kleine Anderung entspricht in etwa Differen-
tial einer Funktion - df(p) = %f(p) -dp)

Geschwindigkeit: v = % = zeitliche Variation

——

Abbildung 1.8.: Energie-Zeit-Unschirfe I. Welle Teilchen Dualitit
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Orts-Impuls-Unschérfe war Ax-Ap >

At =

Ax
v

| 3

Ax

[T

=

SR

Ax-

|

AE - At >

o St

Unscharferelation in Energie und Zeit
Es gibt Komplementaritéat zwischen Energie und Zeit.

IS~

18

v
SIS
4

(1.9)

Physikalische Konsequenz: Es gibt eine natiirliche Linienbreite von Spektrallinien
(eine mathematische Linie wiirde man gar nicht sehen). Diese Breite ist AE = hA®.
Entspricht der endlichen Emissionszeit des Wellenpaketes, diese bewirkt eine Ener-

gieunscharfe.

1.8. Doppelspalt-Experiment

13.10.2011

Klassischer Fall (Kligelchen, etc.)

Abbildung 1.9.: Ein Spalt geoffnet

Abbildung 1.10.: Beide Spalte getffnet

Teilchen werden durch 2 Spalte geschickt (klassischer Fall).
Wenn nur Spalt 1 offen: = Verteilung W;
Wenn nur Spalt 2 offen: = Verteilung W,
Wenn beide Spalte offen: = Verteilung ’ Wio =W + W, ‘
experimentell: Anzahl der 'Klicks’, theorerisch: Wahrscheinlichkeit (W}, ist Summe

der Wahrscheinlichkeiten)

1. Welle Teilchen Dualitét
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Quantenmechanischer Fall

Elektronenkanone -

Versuch wird zum Beispiel mit Elektronen und einer Photoplatte als Detektor, die
beim Auftreffen gefarbt wird, durchgefiihrt. Die Intensitéat zeigt eine Kurve, die fun-
damental verschieden zur Summe der Wahrscheinlichkeiten der Einzelspalte (die wie
im klassischen Fall aussehen) ist.

ebene Welle wird beim Spalt zu Kugelwelle, es kommt in der Mitte zur grof3ten
kostruktiven Interferenz zwischen den beiden Kugelwellen

Elektronen werden durch 2 Spalte geschickt (quantenmechanischer Fall).

Die Elektronen werden hinter dem Doppelspalt mittels Zahlrohr registriert.

Wenn nur Spalt 1 offen: = Verteilung W, (wie oben!)

Wenn nur Spalt 2 offen: = Verteilung W, (wie oben!)

Wenn beide Spalte offen: = Verteilung Wy, # W, + W,

experimentell: Intensitét, theoretisch: Wahrscheinlichkeit

Man erhalt ein Interferenzbild einer Welle am Doppelspalt. Die Intensitéat ist dort
hoch, wo die Wegdifferenz AL = L, — L der beiden Wege, die die Elektronen nehmen
konnen (durch Spalt 1 oder durch Spalt 2) - auch Gangunterschied genannt - ein
Vielfaches der de Broglie Wellenlénge ist: AL = n- A4, progiic-

Interpretation von Born (1926/27):

Nobelpreis 1954

Das Verhalten der Elektronen durch den Doppelspalt wird durch eine Welle (kom-
plexwertige Funktion) beschrieben: ¥(x,7).

Die Wahrscheinlichkeit W des Auftreffens des Elektrons (bzw. die Intensitat 7) wird
durch den Betrag des Amplitudenquadrats angegeben:

Theorie |¥(x,7)|>?=1 Experiment

1. Welle Teilchen Dualitét
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Elektron als Welle:

Spalt 1 offen: W, = |¥;|?
Spalt 2 offen: W, = |¥;|?
beide Spalte offen: Welle ¥ = ¥ + ¥, (Amplituden),
Wi = |2 = |+ Wo|? = |V >+ |2 > + 2ReV[W,

~—— = ——

>0 >0 Inter ferenzterm

Interferenzterm > 0: kostruktive Interferenz, = 0: klassischer Fall, < 0: destruktive
Interferenz

Resultat:

Wenn ein Elektron durch einen Doppelspalt geht, dann trifft es wie ein Teilchen am
Schirm auf (Klick’, lokalisiert). Aber die Anzahl der 'Klicks’, Intensitét, ist durch eine
Welle bestimmt: [¥(x,?)|>. In diesem Sinn: Elektron ist Teilchen oder Welle.

Bemerkungen:

1. Die wahrscheinlichkeitsverteilung gilt fiir jedes einzelne Elektron. ¥ beschreibt
ein Elektron. Ein einzelnes Elektron folgt auch schon dem Beugungsmuster,
man kann nicht voraussagen, wohin es fliegt, man kann nur sagen, dass es
nicht auf ein Minimum der Interferenzkurve treffen wird. Die Elektronen wer-
den gleich prapariert (ihnen wird auch die gleiche Welle zugeordnet), aber sind
nicht die selben.

2. Die Weginformation zerstort das Wellenverhalten. Wenn man bestimmt, durch
welchen Spalt die Elektronen gehen, so ergibt sich wieder die klassische Ver-
teilung (nicht mehr die Interferenz). Je mehr Information dariber bekannt ist,
durch welchen Spalt das Elektron geht, desto mehr verschwindet das Interfe-
renzmuster (kontinuierlich).

3. Das Elektron teilt sich nicht am Doppelspalt! Es gibt nur 1 ganzes Elektron!
Theorie dafiir: Schrodinger.

Experiment Doppelspalt mit Cqy-Molekilen (Fullerene, 6OC-MoIekiiIe):

18.10.2011

M. Arndt,... , A. Zeilinger - 1999
Fullerene: Cq - 60 Kohlenstoff-Atome (C!'?) zu Molekiil-
Struktur
Durchmesser: D = 1 nm = 10~? m (Durchmesser der duBersten
Elektronenhiille)
Massenzahl: Daltonzahl: 60-12 =720 u
in Ofen erhitzt (= 900 K) — schieflen aus Ofen mit v,,,, =
220 ms™!

7‘1"1“1’2 +W¥) = ViYW, + (WW2)* = 2ReW(W,, da allgemein z+ 7" = 2Re 2
Abbildung I.11.: Fulleren

1. Welle Teilchen Dualitét
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deBroglie Wellenldnge: Ageprogiic = = = 2,5 pm = 2,5-107'2 m - MaB fiir Interferenzfi-

higkeit eines Objekts, Verhltnis % = ;1
Doppelspalt: SiN-Struktur, d = 50 nm breit, 100 nm Periode

Beugungswinkel: 6 = =5 Bogen
= gute Kollimation (Einengung des Strahls) no6-
tig
= geringe Intensitat wichtig (wichtig fiir einzel-
ne Ereignisse, Effekt ist nicht reiner ‘Massenef-
fekt’)
Kohérenzlange L. =4,2 pm=4,2-10"!?> m Dedektion:
Laser schleudert ein Elektron aus dem Fulleren
heraus, wenn Fulleren durch Laser geht, dadurch
wird das Fulleren geladen und kann dedektiert
werden keine Weginformation!
Fullerene heil — Strahlung, Photon Wellenlénge
Aphoton =5 —20um >> d = 50 nm
= A Weginfo — Interferenz moglich
Resultat: Interferenzbild

AdeBrogl ie

0 SR S
-200 -100 0 100 200
Position (pm)

Abbildung I.12.: Verteilung der Fulle-
rene mit und ohne
Gitter

1. Welle Teilchen Dualitit
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Il. Zeitabhangige Schrodinger-Gleichung

II.1. Schrodinger-Gleichung - Wellenfunktion

Energie E = 7- o Frequenz

Impuls p = ik Wellenzahl

suchen DGI., die Wellenverhalten hat und die Physik richtig wiedergibt

betrachten ebene Welle (ist Idealisierung, eigentlich Summe tiber alle méglichen Wel-
lenzahlen, mit ’Gewicht’ {(k) - Fourier-Integral, Fourier-Transformation)

Idealisierung eigentlich (Superposition)
l//(x,t) — ei(kxfwt) WP(x>t) — /(><> \;Z_k_lp(k)ei(kxwt)
2 or i(kx—at)
ih () = QE@/ w(x1) & Ey(x,1) - / ) diw ¢
—ihVy(x,t) = \hf/l'”( )Q:Tpll/(x’t) _>/ hk pl(kx—or)
b p
_thl[/(X,l) ( ) (x [) or pzl//(X,t) . / —1/7(]() (hk)Zei(kx—a)t)
\;_/ . /_27'6 \;_/
b p

nichtrelativistische Energie-Impuls-Beziehung;

»

Vix
esamtenergie ~ .
kin,Energie POZ.Energlg

mal y(x,?) - beniitze Zusammenhang:

2

ih%ly(x,t) = {—zh—mA—I—V(x)} y(x,t)

Schrodinger-Gleichung, 1926 (Nobelpreis 1933)

Losung y(x,t) Wellenfunkion

[|w(x,t)]?dx... Aufenthaltswahrscheinlichkeit (Wahrscheinlichkeit, Teilchen im Be-
rech zwischen x und x+dx zu finden) - Wahrscheinlichkeitsinterpretation von M. Born

19.10.2011
Andere Schreibweise (3-dimensional - wir betrachten nur 1-dimensionalen Fall):

Hy(Xt) = ih% y(X,1) zeitabhingig (IL.1)

wobe der Hamilton-Operator H = —%Ajt V(x) — E Energie
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mit Warhscheinlichkeitsinterpretation von M. Born: [ |w(%,¢)|?d*x... Wahrschein-
lichkeit das Teilche zur Zeit t zwischen ¥ und ¥+ d3x zu finden

z.B. Wellenfunktion:

bei A... wahrscheinlichster Wert (t, )2
bei B... W=0, Teilchen dort nicht auf- '
findbar

Normierung der Wellenfunktion:

/

/ ; dx|y(x,0)* =1 (11.2)

= €T
dx A B

= Wellenfkt hat Abfall im Unendlichen

Abbildung II.1.: Beispiel einer Wellenfunktion
Bemerkung:

Wegen der statistischen Interpretation der Wellenfunktion (M. Born) gibt es eine
prinzipielle Unbestimmtheit (bei einer einzigen Messung nicht méglich vorauszusa-
gen, welches Ereignis eintreten wird).

Resumé:

Die Schrodingergleichung ist eine Differentialgleichung. ..

1. ... 1. Ordnung in der Zeit ¢, y(x,t) ist durch Anfangswert r = 1y gegeben (physi-
kalisch wiinschenswert).

2. ...linear in y - damit gilt das Superpositionsprinzip (auch wiinschenswert), also
wenn z.B. y;, y» Losungen = y = cyy| + 2y, auch Losung.

3. ..., die homogen ist, = die Normierung gilt fiir alle ¢!

II.2. Quantenmechanische Korrespondenz

ebene Welle: y = ¢/(k—®1)

L d
ﬁzhgw—hwy/_gq/

in 2y = hky = py
dx =

ordnen den physikalischen Grof3en Energie und Impuls Operatoren zu: Quantenmechan.
Korrespondenz

0
E ie £ — ih—
nergie E — | oy

II. Zeitabhiingige Schrodinger-Gleichung
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Impuls p —» —ifi—

ox
, L 0 Lo
p— —lh? = —ihV
X
Klassische Physik:
p2
E = 5 + Vi) = H(x)
~ m ~— —~—
Gesamtenergie Kinetische E potentielle E.  Hamilton-Funktion

Ubergang zur Quantenmechanik:

L0 i
iy () = (= 5-A+ V(X) y(x.1)
X N——~

2m
2kin E. PO B
Ortsoperator: | Xy(x) =xy(x)
2
Hamilton-Operator: |H = —2—A +V(x) |, damit hat die Schrodinger-Gleichung die Form:
m
. d
Hy(x,t) = lhg v(x,1) (I1.3)

I1.3. Kontinuitatsgleichung

gehen von Schrodinger-Gleichung aus (ih% v =Hy)

komplex konjugierte Gleichung (H* = H, weil wir annehmen dass H immer hermi-
tisch, ist): —ih% v*=Hy*

Wahrscheinlichkeitsdichte:

plx,t) = ly(x,0)* = y* (x.1) y(x,1)

differenzieren nach t:

IP =V Yy Y= (=)L [(Hy )y -y Hy] = [(Ay*)y — y*Ay]

definieren Wahscheinlichkeitsstrom:

N
J(x,t)—zmi[w Vy —(Vy')y]
|9 g;’t)Jer(z,r):o (I1.4)

II. Zeitabhiingige Schrodinger-Gleichung
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Kontinuitatsgleichung, = Erhaltungssatz / x|y (X,1)|* = 1Vt |! (Folgt aus Kon-

tinuitatsgleichung durch Integrieren mithilfe des Gauss’schen Integralsatzes: [, d3x§f:
Jo—avdfi)

1.4. Observable

20.10.2011

2 Konzepte:

1. Zustand eines Systems
reprasentiert durch Wellenfunktion y(x,¢)

2. Observablen
physikalische GroBlen, die wir messen: Ort, Impuls, Energie,. ..
reprasentiert durch Operatoren - hermitisch

QT verbindet beide Konzepte: Zustand <+ Observable = Messwert, Erwartungswert

Operatoren:

Lineare Operatoren A: Ay = @) (y(x) € Ly = [dxy*(x)y(x) < o) = A(c1y] + c2yn) =
1@+t c1peC

Beispiele: V, A, ai 1ly=y,0-y=0

esgilt1-A=A-1,aber: A-B#B-A, (A-B)-y# (B-A)-y

Definition Skalarprodukt von Wellenfunktionen: (ply) = [dxo*(x)y(x)
——

Dirac-Notation

(p|...bra, duale vector ly) ... ket, vector (alternative Notation: (¢|y) )

Eigenschaften des Skalarprodukts:

o (ply)" =(vy|o)
o (plciyi +cayn) =c1{@|y1) +ca{@|yr) ... linear in ket

{
{
o (c1p1+crm|y) =ci(@1|v) +5(@2|y) ... antilinear in bra
(yly) >0

{

viy) =0y =0

Operator im Skalarprodukt:

o (¢p|Ay) = [dx¢™* (x)Ay(x)

II. Zeitabhiingige Schrodinger-Gleichung




Theoretische Physik L2 - Prof. Bertlmann 23

Definition Adjungierter Operator: «' heifit zu A adnjungierter Operator, wenn
(a'oly) = (p|Ay) |, das heiBt [dx(a'@)* (x)y(x) = [dxe* (x)Ay(x)

also a’ = (AT)*
dann gilt: (A-B)* =B" .a'!

Definition hermitisch, selbstadjungiert: Ein Operator A heif3t
hermitisch, wenn a" = A, D(a") > D(A), und
selbstadjungiert, wenn a’ = A, D(a') = D(A)

= Eigenwerte (= Messwerte) reell!

Beispiele:
1. Xy(x) =xy(x)... Ortsoperator
2. Py(x) = —ih% y(x)... Impulsoperator

3. Hy(x) = ( —%A +V(x))y(x)... Hamilton-Operator (Energie)

I.5. Erwartungswerte von Observablen

Definition: Ein Zustand in der QM wird durch einen Vektor |y) im komplexwertigen
Vektorraum mit skalarem Produkt (Hilbertraum) beschrieben.

Definition: Eine Observable in der QM wird durch einen hermitischen Operator be-
schrieben.

Definition: Der Erwartungswert von Observablen A im Zustand |y):

Al
A=y

(wly) =lyl[> Norm  ((yly) = [dx|y[*=1)
(ylA|ly) = (y|Ay) = [dxy*(x)Ay(x) ist auch Mittelwert - physikalische Bedeutung!

Beispiele:
1. Erwartungswert der potentiellen Energie V (x)
V(X)) = (WIVX)|y) = (y|V(x)ly) = [dxy™(x)V (x)p(x) = /_mde(X)lll/(X)l2

klassische Formel fiir den Erwartungswert von V(x) - Summe iiber alle mogli-
chen V(x)-Werte, gewichtet mit der Wahrscheinlichkeit |y (x)|?

2. Erwartungswert des Impulses p

(P) = (WIPly) = [ v () (—ingv () =| [ dppli(p)?

II. Zeitabhiingige Schrodinger-Gleichung
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(2. Schritt: erinnern an Fourier-Transformation: y(x) = \/éﬁ i dpl]/(p)e%ljx weil

PY(p) = pW(p), k= p, W(p) = 5= [ dxy(x)e” i)
|@(p)|?... Wahrscheinlichkeitsdichte fiir Impuls, (P) entspricht der Mittelwert-
bildung in der Experimentalphysik

Unscharfe von Observablen

25.10.2011

Definition: folgender Operator: A =A — (A)

Mi%telwert von A’:
(A7) = ((A—(A))?) = (A2 —2A4(A) + (A)%) = | (A%) — (A)* =: (AA)?

Schwankung, Unscharfe, Dispersion:

AA = \/(A2) — (A)? (IL5)

es kann sein, dass (A) = 0= AA = /(A%) #0
2

z.B. Ortsoperator X fiir gauBlartige Wellenfunktion (y(x) = Ne™*")
(X)=0, (X*)#0

Frage: Hat eine physikalische Observable einen scharfen Wert? Antwort: Ja.

Satz: Die Unschirfe AA einer Observablen A im Zustand |y) verschwindet, wenn |y)
Eigenvektor von A ist.

Beweis: da |y) Eigenvektor von A ist gilt: A|y) = _a ly) aceR
~ ~~

Eigenwert g; genvektor

(A%) = (y|AA]y) = (y]Aly)? = a® (A)? = (wl|A|w)? = (ylaly)* = (a(y]y))* = a?
——

-1
= A =1/(A?) —(A)2 =Vda?>—a*=0

1.L6. Kommutator von Operatoren

A-Bly) =Alo) = [x)
T/-/

)
B-Aly) =B|n) =|S)
im Speziellen: X, P

II. Zeitabhiingige Schrodinger-Gleichung
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PXy(x) = —ihg: - (xy(x)) = —ih(y(x) +x 5 w(x) = =iy (x) + XPy(x)
| X-P-P-X)y(x)=iry(x) |[|Vy(x)
= ] X-P-P-X=ih \ - Operator-Relation

Definition: Kommutator:

[A,B]=A-B—B-A

= Kommutator fiir X und P: | [X,P] = if

3 Dimensionen: | [X;,P;] = ihd;;

Eigenschaften des Kommutators:
1. [A,B] = —[B,A] - antisymmetrisch
2. [A,B] ist linear in A und B
3. [A,B]* = [B*,a’] Kommutator von hermitischen Operatoren ist antihermitisch
4. [A,B-C]=BJA,C]+[A,B]C
5. |A,[B,C]]+[B,[C,A]] +[C,[A,B]] = 0 - Jacobi-Identitét

6. ¢"Be ™ = B+[A,B]+ 5[A,[A,B]] + ... - Baker-Hausdorff-Formel

Il.7. Unscharfe-Relation

Die Unscharfe ist ein MaB fur die Quantenmechanische Standardabweichung in den
Resultaten von wiederholten Messungen von identisch praparierten Systemen.

1. Unschérferelation zwischen Observablen:
Operator A =A — (A) = (A°) = (A2) — (4)2 = (AA)?
Theorem: Seien A und B zwei Observablen, dann gilt fiir jeden Zustand folgende
Ungleichung:

1
AA-AB > = |([4,B]) (IL6)

Beweis: definieren Operator Z = % + i% (nicht hermitisch)
es gilt: (Zy|Zy) = (y|Z"Z|y) > 0 (Lénge zum Quadrat)

= (WI(gx —izp) (a5 +iap)l W) 20

A Do B
(vl (AA)2+A,T(AB—BA)+WW> >0
\\l/—/ | S

= 2AAAB > —i([A,B]) = AAAB > 1|([A,B])|

II. Zeitabhiingige Schrodinger-Gleichung
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Satzz: Wann immer der Kommutator von zwei Observablen A und B nicht ver-
schwindet, gibt es eine Unschérfe oder eine Unschérferelation zwischen den Ob-
servablen.

Observablen - komplementar

Bsp.: X,P = [X,P] = i = | AX - AP >

Bemerkung: Heisenberg-Mikroskop ist eine andere logische Argumentation.

N S

Bemerkung: Zustinde v, fiir die die Unschérferelation minimal ist (AX-AP = 1)
heiflen Zustdnde minimaler Unschéarfe, z.B. Gauss-Wellenpaket (harmonischer

Oszillator). yo(x) = (22)5 =% (X)= (@) =0  (X?),(P%) £0

. Energie-Zeit-Unscharferelation

27.10.2011

Physikalische Groflen: X,P,H ... Ort, Impuls, Energie

Die Zeit selbst ist keine dynamische Grofle in der nichtrelativistischen QM. Ihr
wird kein Operator zugeordnet. Die Zeit ist unabhéngige Variable, Parameter
der Theore. Die Zeit ist keine Observable.

At ist das Zeitintervall, in dem es eine substanzielle Anderung des Systems gibt.

Als MaB fiir die Anderung betrachten wir den Erwartungswert eines Systems —

zeitliche Ableitung (Aénderung) vom EW einer Obsgrvablen.
G (A) = G (wiAly) = (5 vIAlw) + (W] 5Al) + (wlA| o-y) (Schrédinger-Gleichung)
~—~— ~——
(Hyl|; —5Hv)
= (H wird hinter Bra bzw. vor Ket gezogen, erster und dritter Summand sind
Kommutator) Relation zwischen Erwartungswerten:

) = £ (wlHAllW) + (w5 AT a7

Resultat: zeitliche Anderung des Erwartungswertes wird durch Kommutator
mit dem Hamilton-Operator bestimmt.
d i

Typischer Fall: 2A=0  =|—(A)=-

ypischer Fall: £ dt< ) >

Wenn [H,A] =0 (A kommutiert mit H) = | (A) = const. |, zugehorige Observable ist

Erhaltungsgrofe.
erinnere Unschérferelation zwischen Operatoren: AA-AB > 1(([A,B])|

sei jetzt B = H (hamilton-Operator) — AH = \/(H?) — (H)? = AE

([H,A])

hod
= AE-AA> —|—(A
51 (A)]

II. Zeitabhiingige Schrodinger-Gleichung
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Definition:

AA
At = ——— = |AE - At

|G (A

Energie-Zeit-Unschérferelation

v
NS

(IL.8)

|

ISy

Bedeutung von Ar:  AA = |4(A)jar S =|d(A)]
At ist die Zeit, die verstreicht, wenn sich der Erwartungswert einer Observablen
um eine Standardabweichung AA dndert. AA = /(A2) — (A)?

Beispiel: Wenn sich die Observable schnell dndert (Ar klein) = AE Energieun-
schéarfe grof3 und vice versa.

Wenn eine Observable stabil ist (EW dndert sich nicht - %<A> =0= At — ) -
System ist stationiar = AE = 0, keine Energieunschérfe.

11.8. Ehrenfest-Theorem

Die klassische Physik ist als Grenzfall in der QM enthalten, in folgendem Sinn:
gehen aus von Theorem: Relation zwischen EW: %(A) = +([H,A]) + <%—?>

benétigen: A=X,p H= % +V(x) (weil (%—ﬂ =0 fir A =X, p)

2
oo o U oy L [P
[H7xl] = [; zmaxt] ~om Z(pj [pjaxl]+[p]7xl]p]) = 2m( ihp; lhpl) = lhm = [Haxl]
—ihéij
H.pi) = V@), —ih-2) = |in-2v () = [H. pi]
7pl - x? l axi =11 axi X)= 7]71

erinnern an klassische Kraft: K(%) = —VV (%)
fiir A =%, 5 gilt: 4(3) = L(p) baw. £(5) = —(VV(®) = (K(%))

m

= Ehrenfest-Theorem (1927) aus Kombination und Ableiten der beiden Gleichungen:

d? .
mﬁ@‘c’) = (K(¥)) (IL.9)

Die klassischen Bewegungsgleichungen sind fiir die Mittelwerte der Messoperatoren
erfiillt.
wir wollen haben: (K(¥)) = K((X)) - gilt im Allgemeinen nicht, gilt aber:

1. fur freie Bewegungen
2. fiir den harmonischen Oszillator

3. approximativ fiir lokalisierte Wellenpakete

II. Zeitabhiingige Schrodinger-Gleichung
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Virial-Satz: A = x-p (’so was wie eine Wirkung’)

h 0
[H,xp] = x[H,p|+[H,x|p =~ 2T —x5-V)
N N~ 1 8x

2 0 —ih2
lhmv lhm

(% =T ...kinetische Energie)
mit Relation der EW:

%(xp) = %([H,xp]) = (2T —xaiw Wirkungsédnderung im EW
X

im stationdren Zustand: %(xp) =0=|2(T) = (xaw (das ist der Virialsatz der klas-

sischen Mechanik) .
fiir den harmonischen Oszillator (V = 22°x?) erhélt man (T) = (V) (deswegen ist der
harmonische Oszillator ’so harmonisch’)

3.11.2011

Bemerkungen:

1. Generator fiir Raumtranslationen
Sei y(x) eine Wellenfunktion (das heiflt jede Funktion die in Taylorreihe ent-
wickelbar ist), = Lemma:

W(x+x0) = eF POy (x)

i j ; ’
=(14+£ P_xo+%(5)Pa3+.. ) w(x) = (1 + —ihgxo+ 433 25 +. . )w(x) = y(x+x0)
—ihg

2. Generator fiir Zeittranslation
y(x,t)... Losung der Schrodinger-Gleichung (ih% y(x,t) = Hy(x,t)) =Lemma:

w(x,t+10) = e #0y(x,1)

3. Zerflielen des Wellenpakets
Wellenpaket bewegt sich entlang x mit Geschwindigkeit v = 7 (Gruppengeschwin-
digkeit - entspricht Teilchengeschwindigkeit im Teilchenmodell).

II. Zeitabhiingige Schrodinger-Gleichung
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Ax

zur Zeit t=t t=t

XZ X

t=t3

wir wissen: Heisenberg-Unschérfe: 3Ax Ortsunschéirfe = 3 auch Av Geschwin-
digkeitsunschérfe; fiir die Ortsunschérfe folgt dann: | Ax(¢) = Ax(0) +7-Av| - An-

stieg der Ortsunscharfe in der Zeit! Das heilit das Wellenpaket zerflieB3t (ver-
breitert sich) und der Peak sinkt wegen Normierung der Wellenfunktion (Flache

muss gleich bleiben: [ |y(x)|?dx = 1)

II. Zeitabhiingige Schrodinger-Gleichung
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lll. Mathematischer Formalismus der
Quantenmechanik

Nur praktisch (einige bendétigte Dinge), nicht systematisch.

lIl.1. Hilbertraum

Alle Objekte der QM sind Elemente vom Hilbertraum (HR). HR ist ein Vektorraum in
C, mit einem Skalarprodukt. HR kan endlichdimensional oder unendlichdimensional
sein.

1. im endlichdimensionalen Fall gilt fiir das Skalarpordukt
x-yeC x,y € HR x:Zixi\e/,-/

Basis

xy=@-x)"  xy=Yxy
i

Norm: [[x]| = /x-x = /¥ [xi[?
Operator: Ax =y vi = Ajxg
Operator, der Vektor aus HR in anderen Vektor aus HR uberfiihrt.

2. im unendlichdimensionalen Fall wird der Vektorraum zum Funktionenraum,
Vektoren werden C-wertige Funktionen, Skalarprodukt wird zum Integral iiber
diese Funktionen, x; — vy, = y(x).

Wichtig fiir QM:
(@ | v) = [dxo*(x)y(x)
— =~
dualer V Vektor
Eigenschaft:
(oly) = (ylo")
Norm:

il =Vwlv) =/ [ dxiw@) <

Raum der quadratisch integrierbaren Funktionen: L,.
Operator:

Aly) = o) |¢) € HR

Satz: HR ist vollstandiger Funktionenraum mit Skalarprodukt. (Ein Vektor im HR
ist also in jede Basis VONS (vollstandig orthonormiertes System) entwickelbar!)
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fenial- 1 ikx
Belsplell. Ebene Wellen Norid VONS
el X

lex) = N
(ep|er) = (K —k) Dirac-Funktion

1 . /
i(k—K)x _ r
T / dke S(K —k)

Wellenfunktion ist Vektor im HR, d.h. entwickelbar in ebene Wellen (diese bilden
VONS).

1 ~ ikx
vl = [ dkwime

lll.2. Dirac-Notation

Vektor im HR: |y) ... ket, adjungierter Vektor: (y/|... bra
Skalarprodukt: (¢|y) = [dx¢*(x)y(x) € C... bracket
Operator wirkt auf ket: A|y) = |¥) € HR
(¥| = (y|a" auf bra
zwei Operatoren: (hier anderes W als vorher) AB|y) = |¥) = (¥| = <‘V|€Lﬁi
(AB)*
betrachten folgenden Zustand: AB|y) (¢|C|¢) € HR Man kann auch |y)(¢| als Opera-

eC

tor D ansehen. Adjungiert: (¢|C* |@)(y|B*a’.

DTt
Das heif3t die Multiplikation |ket) x (bra| (duBlere Multiplikation) ergibt einen Opera-
tor: |y)(¢| = D, der adjungierte Operator ist dann: D™ = |@)(y].
Es gilt: |y)(p|" = |¢)(y| (Multiplikation eines Spaltenvektors mit einem adjungierten
Vektor (— Spaltenvektor) gibt eine Matrix).
Achtung: (y|@) € C, aber |y)(¢| € HR ist ein Operator, z.B. |y)(y| heilit Dichtematrix
von oder Projektionsoperator auf Zustand Psi.

9.11.2011

l11.3. Projektionsoperatoren und Entwicklung von Zustanden im
VONS

Wir untersuchen als nichstes die Entwicklung des Zustands |y) im VONS {|y,)}:

ly) = ch|‘/’n>

wobei Entwicklungskoeffizient ¢, ... Wahrscheinlichkeitsamplitude fiir Wahrschein-
lichkeit, mit der Zustand |y;) im Zustand |y) vorkommt

cn = (Yl W)

III. Mathematischer Formalismus der Quantenmechanik
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(Wl W) = Lo cn (Win W) = cm
=4,
physikalisch: Ubergangsamplitude vom Zustand y auf Zustand vy,,, Wahrscheinlich-
keitsamplitude
dann schreibbar als:

v) =) (v (W)

n
Operator P,

dann ist P, ein Projektionsoperator:

By = (W) (W

(projektive Messung von Neumann)
da Operator P, aus dem Zustand |y) den Anteil |y, ) herausprojeziert

Balw) = (W) (Wl W) = cnl W)

Cn

lcn? = || W) |? ... Wahrscheinlichkeit, mit der Zustand |y,) im Zustand |y) gefunden
werden kann
es gilt:

Pn2 = W) (W W) (W] = (W) (W| = P
=1

allgemein gilt: jeder Operator definiert durch P?> = P heifit Projektionsoperator
klarerweise gilt: P* = P

Projektionsoperatoren sind orthogonal

’Pm-Pn:O fﬁrm#n‘

Pm'Pn:|‘Vm> <‘Vm|‘/’n> <‘Vn|:O (<Wm|‘l’n>:5mn)

=0 fur m#n
3 Orthogonalrelation, es gilt:

Satz: Die Summe aller Projektionsoperatoren ist vollstandig

Z P, = Z lwn) (yu| =11 ... Vollstandigkeitsrelation
n=1 n=1

Der Satz folgt aus folgender Gleichung: |v) =Y., |y,) (| |v)
——

==1
|y,,) ist der Zustand, der durch die Quantenzahl n charakterisiert wird

III. Mathematischer Formalismus der Quantenmechanik
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W) — |n) verkiirzte Schreibweise

Vollsténdigkeitsrelation fiir Zustand {|n)}:

il|n><n| —1

Beispiel Kugelflachen: |Y;,,) — |im)
= Vollstandigkeitsrelation fiir Kugelflachen:

o ]

Y ) lim)(im| =1

[=0m=-—1

III. Mathematischer Formalismus der Quantenmechanik
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IV. Zeitunabhangige Schrodingergleichung

IV.1. Herleitung

A
ih S W) = Hy (1)

beim Ubergang X — x gilt auch (da auBerdem ’”TV2 = %):

. d 2 2d2 2 2
X X
2 2

p —h
V(x,t —A+V(x,t
HVt) = A+ V(x1)

also: H="—
2m
Annahme V(x,7) = V(x)... Potential zeitunabhéingig oder allgemein H zeitunabhén-

g1g
Seperationsansatz: y(x,t) = y(x)f(7)

setzen in Schrodingergleichung ein:

2 12 X
= in 2y 0) = Hy (W 0) = 2 O o) v @y 0

) . . 0 K2 2y(x
= einerseits: zhl;/(x)af(t) = —%f(t) ;;g ) +V(x)yp(x)f(r)
'7w<:1>g<> @ n* —azgng)
" andererseits: ih—2— =—— 9 _1V(x
70 2y
N—— N ~~
nur von t abhéngig nur von x abhéingig

und da man hier statt d auch d verwenden kann und auflerdem aus F(t) = F(x) = F =
const. folgt, gilt:

B __p o
jh—4_ — 4 _ 4V (x)=const. = E
0= oy T

Aus einer Gleichung (Schrodingergleichung) haben wir als 2 Gleichungen erhalten:

ausin..—E —in® ") =f()E = W _ _lpg L Inf=—~Et+const = | f(t) = e "7 o
dt f h h
n h? d*y(x) 2 42
aus —%—E :>—5n s +V(X)W(X)—El[/()€) = (—%E—FV(X)) l[/(X) —El[/(x)
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Theorem: Zeitunabhéngige Schrodingergleichung:

2
_ : _ P
Hy(x) = Ey(x) mit H = -

+V(x)

Definition: Ein Zustand wird ’stationir’ genannt, falls seine Wellenfunktion durch
y(x) = e i dargestellt werden kann. Fir solche Zusténde ist die Wahrscheinlich-
keitsdichte |y(x,1)[2 = y* (x,))w(x,1) = y*(x)y(x) ¢ i e #5 = |y(x)|* auch unabhéngig

=1
von der Zeit.

Die Erwartungswerte von Observablen A(X, P) sind auch zeitunabhéngig.

(A(X,P)) /dxl,t/ ehE’A(x —zh;x —/dxl// X, — aax)

Bemerkung 1: (H(X,P)) = [dxy*(x =E / dxl// = 1 (wenn normiert) =

Energieniveaus eines stationédren physikalischen Systems sind zeitunabhéngig!

Bemerkung 2: Falls die Wellenfunktionen normiert sind, sind die moglichen Werte einer
Konstante E die Energien des Systems. — verschiedene Energieniveaus (Ey = Grund-
zustand, E; = néachster usw.) - falls normiert = F € R

Lemma - Eigenschaft: Die Losungen y/(x) der zeitunabhéngigen Schriodingergleichung
konnen immer reell gewidhlt werden.

Definition: Der Paritiatsoperator P (Spiegelungsoperator’ - beziiglich y-Achse) wirkt
auf eine Funktion f(x) so, dass das Vorzeichen des Arguments gedndert wird:

Pf(x) = f(—x)
Pfgemde +fgemde Pfungerade = _fungerade
z.B. cos z.B. sin
fgerade (x) = W(x) + l//(_x) fungerade (x) = V/(x) - W(_x>

10.11.2011

IV.2. Die Schrodingergleichung als Eigenwertgleichung -
stationare Schrodingergleichung

Hly) =E|y)

IV. Zeitunabhingige Schrodingergleichung




Theoretische Physik L2 - Prof. Bertlmann 36

Anmerkung: allgemeinere Form einer Eigenwertgleichung: Aly) = a|y) wobei z.B.

0
von o, mit zugehérigen Eigenvektoren sind: 1 mit (;) und —1 mit )
da die Schrodingergleichung als Eigenwertgleichung ein Spezialfall der stationéiren
Schriodingergleichung ist, ist sie von der Zeit unabhingig

A=o0,= ( ! _01 ) der Operator und a z.B = 1 der Eigenwert ist (die Eigenwerte

(H) = (y|H|y) = (V|E|y) =E(y|y) =
=1

E hat keine Unschirfe:

AE = AH = \/ (H2) — —\/l//|HH]1// —E2=0
—F2

Theorem: (aus der linearen Algebra) Eigenwerte von hermitischen Operatoren sind

reell und die Eigenvektoren zu verschiedenen Eigenwerten sind zueinander orthogo-

nal. (wir wollen reelle Eigenwerte — deshalb verwenden wir hermitische Operatoren)
Die Anzahl der Eingenwerte entspricht der Anzahl der Zustéande = Spektrum

Vereinfachung der Schreibweise: H|y,) = E, | y,,) Vs |n) = Ep|n)

Kronecker-Delta: 6, = (n,m)
Vollstandigkeitsrelation: Y, |n) (n| = 1 vollstandige Beschreibung des Systems

IV.3. Entwicklung in stationare Zustande
Unter Verwendung des Theorems auf S[35| konnen wir einen gegebenen Zustand in

ein vollstandiges orthonormales System von Energie-Eigenzustidnden entwickeln.
beliebiger Zustand durch |y) =Y, (n|n) beschrieben

allgemeiner Lésungsweg:

|w>:cl() m() ++()
=y =l [l )= [ dx \‘g aly) = [ dxv v

1—kontinuierl. VONS eC
Beispiel:

ih%w(x,t) =Hy(x,t) mit der speziellen Losung:

Lp ¢

W (x,1) = yu(x)e 7 (gesamte Losung fiir Schrodingergleichung)

IV. Zeitunabhingige Schrodingergleichung
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allgemeine Losung: ‘Superposition’

wit) = Y catin(x,1) = | Y cap(x)e HE"

wobei ¢, ... Entwicklungskoeffizienten
betrachten t = 0: Skalarprodukt mit y,,

LE,0

——

[ axmws0) = [ e () e

=1

= (Y| W(x,0)) = Y cubum = | cn = (Y| w(x,0))

das ist die Physikalische Interpretation der Entwicklungskoeffizienten

sei A... Observable, die den Zustand |y,,) erzeugt: A|y,) = a,|¥,)
also ist der Erwartungswert (A) = (y,|Ay,) = a, genau der Eigenwert

e eine Messung der Observablen A produziert immer das Resultat a,, falls der

Zustand |y,) war.
= Unsicherheit =0, AA =0

e Weiters andert sich nichts am Zustand |y;) bei der Messung.

) 2 )

e Was passiert falls das System in einem beliebigen Zustand |y) ist?

(A) = (ylAy) = Z<le//m’AZ|Cn‘Vn> = chjncn<wm|A|‘Vn>

m m n

=Cpp (Y|

=YY crcnan(Wnlwn) =YY chcntnSun =

m n

Z‘Cnlzan
n

= ¢, sind Wahrscheinlichkeitsamplituden um aus dem allgemeinen Zustand |y)

in den Eigenzustand |y,) zu kommen.

= |cy|? ist die Wahrscheinlichkeit des Ubergangs von |y) in |y,) bzw. die Wahr-

scheinlichkeit, mit der man den Messwert a, findet.
= Gesamtwahrscheinlichkeit: |} [c,[* = 1

Damit gilt im Allgemeinen: Die Messung einer Observablen A eines Systems im
Zustand |y) dndert diesen Zustand in einen Eigenzustand |y,) der Observable. Dies
nennt man auch Reduktion oder Kollaps der Wellenfunktion.

15.11.2011

IV. Zeitunabhingige Schrodingergleichung
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IV.4. Endlicher Potentialtopf

gehen aus von Schrodinger-Gleichung:
2 2 n

(-5 & +v) v = Ew) v

wahlen Potential: V(x) = —u= -V falls —a=-L <x <

L=a, x
sonst V(x) =0 | |
studieren Fall: -V, <E <0 i

= Bindungszustdnde des Teilchens im Potenti-
al
Gebiet I: (—c0, —a]

2
1

d—l//=K21[/ K=—v—2mEcR,>0

dx? h

V(x) =Ae ™+ Be™
Wegen der Normierung gilt: Ae " =0

KX

= |y(x) = Be

Gebiet IT: [—a, a]
d? 1
SV=—aY  q=V2m(E+V)ER >0

(weil E nie negativer ist als V)

— eiqu

v (x) v (x) = Ccos(gx) + Dsin(gx)

Gebiet III: [a, ), wie I
Y(x) =Ee™ +Fe ™

Ee® =0 aus physikalischen Griinden

= |y(x) =Fe”

trennen gerade und ungerade Losungen:
gerade Losungen:

Be** (I)
v (x) = { Ceos(qx)  (IT)
Be ®* (111)

Konstante bei (III) ist B wegen der Stetigkeit von y(x) und y’(x) (siehe Skizze), die
wir verlangen (physikalisch sinnvoll)

IV. Zeitunabhingige Schrodingergleichung
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ungerade Losung: 4

Bek‘x (1) () —

v (x) = { Dsin(gx) (1] o
—Be ™ (III)

In den Bereichen (I) und (IIT) gibt Vo -V
es eine Aufenthaltswahrscheinlich-
keit des Teilchens (klassisch: verbo- I il I
ten!) = Tunneleffekt
(es gibt eine bestimmte Eindringtie- 0——
fe, die beim Grundzustand am tief-
sten ist)

I 4

H

Es gibt diskrete Energiewerte \ \/
v(x) und y/(x) sind stetig bei x = L, :

- -V
also muss gelten:

V(L) —Cgsin(qL) —Bxe *&
- - —xL
y(L) Ccos(qL) Be= X
(1) (1)

=|gtan(gql) = K

= Gleichung bestimmt Werte von E, weil g = % 2m(E +Vp) K= %\/ —2mE
graphische Losung:

Def: z =¢qL 0= % 2mVj
2
2 2 2mVQ Z_()
L2 =7
FLZ - 2
K 20
SV
q b4

IV. Zeitunabhingige Schrodingergleichung
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0 2 :"-r Zy3n 2r 23 br 29 3w s
2 2 2

0= %\/va = 8 (durch Wahl von V) = 3 Losungen: z1,2,,z3 = E|,E>, E;5 diskrete Wer-

te fur Energie

Geht man mit dem Potentialtopf tiefer, so wird zy groer werden, dann gibt es mehr

Zustande. Also es gibt weitere Energieniveaus (diskrete Zustande).

Geht man mit dem Potentialtopf hinauf, so werden es immer weniger Zustéande, aber

der letzte Zustand verschwindet nie.

16.11.2011

IV.5. Tunneleffekt

. Vo —L<x<L
betrachten folgendes Potential: V(x) = 0 =4= Vo> 0)
0 sonst
A
Vo Vo
/-\-"u’ 8 = i = e N s, -
- >
e i

e
E
0 —>

i L

I I I

wir nehmen an: E < Vj): Teilchen incoming

klassisch: einlaufend, wird reflektiert

2m dx?

QM - Schrodinger-Gleichung: Hy = Ey (—h—zd—z + V(x)> w(x) = Ey(x)
Loésungen y(x):

IV. Zeitunabhingige Schrodingergleichung
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(Ae 4 Be—ikx (1)
Ce % De?* 11
Jees ot ()
- 0 aus physikalischen Griinden
v(x) hysikalischen Griind
Fetk Ge & 11
+ Ge ™ (1)
L 0 aus physikalischen Griinden

k=1V2mE>0  g=3/2m(Vo—E) >0

D = 0 fiir gentigend grofles L und G = 0 weil keine Reflexion im Unendlichen stattfin-
det.

Im Gebiet I: einlaufende Welle und reflektierte Welle, wie klassisch

Im Gebiet II: y(II) # 0 (exponentieller Abfall), das ist klassisch unmoglich

Im Gebiet III: y(III) # 0, klassisch unmoglich, auslaufende Welle mit gleicher Fre-
quenz (Energie) aber geringerer Intensitat

dann ist Transmissionswahrscheinlichkeit (Wahrscheinlichkeit, dass Teilchen ’durch-
tunnelt’):

AL Sy
y(L)| = jcPe ¥ V2B

Transmissionskoeffizient:

4L —
T(E) = |W(L)Rormion = ¢ # V200

fiir Potentialberg (verlaufende Kurve, Form &dhnlich wie Gaul3kurve) von x; bis x;
kann man mit Stufen approxiemieren:

T(E) —eh / Cd 2m(V(x) — E) | Gamow-Faktor

X1

Physikalische Beispiele:
1. a-Zerfall in Kernphysik (Gamow 1928) (Abb. - S.

Atomkerne wandeln sich in andere um, durch Aussenden von a-Teilchen:
22p, 5 208pp, 4 o-Teilchen: He-Kern (2 Protonen, 2 Neutronen)
Lebensdauer 1 =3-10"" s, Energie E4 = 8,9 MeV

2. Potentialmodell fiir Elektron im Metall (Abb. - S.
im Metall sind quasi freie Elektronen, Potentialtopf ist gute Ndherung
oberstes besetztes Energieniveau wird Ferminiveau (Fermienergie) genannt
W =Vy—E, =Vy— Er (bei absolutem Nullpunkt)

3. Kalte Emission von Elektronen aus dem Metall (Abb. - S.
Elektronenemission bei Anlegen von elektrischem Feld am Metall, dadurch ver-
andert sich das Potential und die Elektronen tunneln durch
Kraft des elektrischen Feldes: ¢E = F = — 4V (x) = V(x) = Vo — eEx
(E ... elektrische Feldstarke)

IV. Zeitunabhingige Schrodingergleichung
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E
-
E.
A
Vo >
R ) } W
T‘O > En = EE:rmi E
B Occupied States
E,
e D — 0
'*'*Jtt'l‘{**‘:'ti“-‘- Coulomb potential o 1 Metal
potential !
Abbildung IV.1.: o-Zerfall Abbildung IV.2.: Elektron im Metall

4. Isolator zwischen zwei Metallen (Abb. - S.
auch hier gibt es den Tunneleffekt, Elektronen *tunneln’ durch den Isolator

IV.6. Harmonischer Oszillator

2
Potential: |V = %xz , algebraische Methode zum Losen der Schrodinger-Gleichung:

gehen aus von Hamilton-Operator: H = % + ’”T“’zx
losen Eigenwert-Gleichung: Hy = Ey

2

1.5

Ny =
o P T (@) v =Ey

X
Operator: p?> +x> = (X—ip) - (x+ip) OK in klass. Physik, aber # in QM, da [X,P] =ih #0
Wir machen etwas in dieser Art (Faktorisierung), aber werden noch Zusatzterme be-
kommen. Dazu fithren wir folgende Operatoren ein:

a': \/ﬁw(mwxﬂL ip)  Vernichtungsoperator, annihilation-operator
a' = 2,:“0,-, (mowx—ip) Erzeugungsoperator, creation-operator

= xund p

x=/5s(a+al) p=—i\/""(a—a")

es gelten folgende Kommutator-Relationen:
[a,a’] = 1 (folgt aus [x, p] = ih), [a,a] = [a",a’] =0
driicken Hamilton-Operator durch a,a’ aus: H = 5-[p? + (mwx)?]

IV. Zeitunabhingige Schrodingergleichung
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A\
N
!

v

VAC
E ___________________________________
conductor conductor
I I
Abbildung IV.3.: Kalte Emission Abbildung IV.4.: Isolator
adla= ;{(ma)x)z — im® (px —xp) +p°}
2moh ——
=[px]
1
a = e {(m(x)x)2 — imo|x, p| —l—p2}

ho
=H = T[cﬁa—#acﬁ]

erinnern: [a,a'] =1 = aa’ = a’a+1

1
= |H =hola'a+ 5]

Eigenwertgleichung: Hy = Ey

1
= hold'a+ 3] [v) = E|y)

N = a'a heiBt Teilchenzahloperator oder Besetzungszahloperator

= Kommutatorrelation: [N,a'] =a'  [N,a] = —a

suchen Eigenwerte und Eigenfunktionen von Teilchenzahloperator N

N|y,) = n|y,) (es wird siche herausstellen: n € Ny) Notation: |y,) = |n) = N|n) = n|n)
Eigenwerte: aus Skalarprodukt n(n|n) = (n|N|n) = (n|a’a|n) = (an|an) >0

= = n = 0 ist niedrigster Wert

fiur n = 0= N|0) = 0 niedrigster Wert = |0) ist Grundzustand, Vakuum
a'a|0) =0 = |a|0) = 0| das ist eine Bestimmungsgleichung fiir Grundzustand
10) = |yp) — wo(x) als Wellenfunktion angeschrieben

Grundzustand: (mox+i2 L) yp(x) = 0 & (22x+ L)yp(x) =0

— (als Physiker) [ dwl: = [—"Dxdx = Inyy = —22x> +Inc

_mw_ 2

Wo(x) =ce 2"

IV. Zeitunabhingige Schrodingergleichung
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Normierung:

oo © _me wh mao i
[ wtsas 1= e [ e (22

aus Eigenwertgleichung folgt: N — 0= Ey = ’%“’ Grundzustandsenergie

” 2
me”

V(z) == 72

By = %ﬁw

Eg = %h‘-‘-’

_ By = L

— _ — By = Shu

Es = %ﬁu.‘

Es = %hw

) i e - By — %ﬁw‘
et - 42;?—0-; —— By = %h'w'

furn=0,1,2,... = Energiespektrum: E, = ho(n+ %)

22.11.2011

Zusammenfassung:

Hamilton Operator: H = % + sz
Eigenwertgleichung: Hy;, (x) = E, y,(x) ne€ Ny
suchen Losungen mittels algebraischer Methode:

Def. a :] \/ﬁ(mwx—l— ip) Vernichtungsoperator

al = 5z (mox — ip) Erzeugungsoperator

=x=...(a+ad") p=...(a—a")
diese in H = ... einsetzen (dabei verwenden: [a,a’] = 1):

1
= H=rhoaa+ 5)

N =d'a... Teilchenzahl- bzw. Besetzungszahloperator
N erfiillt folgende Eigenwertgleichung: N|n) = n|n)
Def. Grundzustand - Vakuum

al0) =0 = N|0) =0= A Quanten

IV. Zeitunabhingige Schrodingergleichung
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Grundzustands-Wellenfunktion (x|n) = v, (x)
aus p= "4 folgt: um (x|a|0) auszurechnen muss man a als Funktion von x darstellen,
damit ergibt sich daraus (“2x+ L)yy(x) =0

mo 2

= Yo(x) =Ne 2~

N aus Normierung ([~ |yo(x)[>dx = 1)

= ff:x,e_“xzdx: Z=>N= (”71[—%’)%

Energien: E, = ho(n+ 3) = 3 Grundzustandsenergie E
ho

E0:7>0

E = §h(JO

Lemnzaa: Wenn |n) ein Eigenzustand von N mit Eigenwert n ist (also wenn N|n) = n|n)),
dann ist ' angewandt auf n (also a'|n)) Eigenzustand von N mit Eigenwert (n+1).
Beweis: N(a'|n)) = (a"N +a")|n) = (n+1)a|n)

(weil [N,a'| =a" = Na" =a'N+d") a'|n) = [n+1)

]
Proportionalitidtsfaktor aus Normierung: (a'n|a’n) = (n|aa’|n) = (n|a’a+1|) = (n+1){n|n) =

(n+1) (weil [a,a'] = 1 und weil (n|n) = 1 wegen Normierung)

=a'ln) =vn+1n+1)

Zustand Eigenwert
Grundzustand |0) 0
1. angeregter Zustand |1) = \%aHO) 1
2. angeregter Zustand [2) = a'|1) = ﬁ(cﬂ)zm) 2
3. angeregter Zustand [3) = a'|2) = \/;ﬁ(cﬂ)ﬂm 3
1
n. angeregter Zustand: | |n) = —(a")"|0) n
V!

analog fiir den Vernichtungsoperator a:
Lemma: Wenn |n) Eigenzustand von N mit Eigenwert » ist, dann ist a|n) ein Eigenzu-
stand von N mit Eigenwert (n—1).

= aln) = v/n|n—1)
Wellenfunktion:

o= ()" (&) e

5 h mwx d
a' =\ — [ — - —
2mao /) dx

IV. Zeitunabhingige Schrodingergleichung
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Wellenfunktionen:
n=0 Wo(x) ~ e e gerade Funktion |- ("*x — %)
n=1 Vi (x) ~xe” 5 ungerade Funktion, 1 Knoten |- (%2x — %)

n=2 v (x) ~ (x* + const.)e_%x2 gerade Funktion, 2 Knoten

Polynome sind genau die Hermit-Polynome H,(x) (diese bilden ein vollstéandiges Sy-
stem im Funktionenraum)

mo .2

ny,(x) = NH,(x)e” 2=~

23.11.2011

Harmonischer Oszillator

a|n) = y/n|n— 1) Vernichtungsoperator
a'|n) = v/n+ 1|n+ 1) Erzeugungsoperator
{|n)} Fock-Raum (vollstédndiges orthonormiertes System)

erinnern: X = /5" (a+a") Ortsoperator

P=—i/™®(q—a") Impulsoperator
bisher: (X)y, = (Vulx|yn) = [T dxy;i(x) - Y, (x) - Funktionen einsetzen, ausrechnen
jetzt, im Fock-Raum:

(X) = (n|X|n) = \/%(n\a—ka”m = 2;Zw (valnln—1)++/n+1{nn+1)) =0

(weil (n|m) = 8yn = (njn+1) =0weiln #n+1)

(P) = 0 (gleiche Argumentation)

(X2) = (n|X2|n) = %(n\az +d'a+aa” + (a")?n) @*> und (a')?> werden wegfallen (sind
null), Argument wie oben

N=a'a N|n)=n|n) [a,a']=1— aa’—a'a=1und damit:

h
<X2):2mw(n| @ +ad'a+ ad +(af)2|n>:%(2n+1):xg(zn+1)
0 N ata+r1=N+1 0 \/;’
=X3

analog (P?),= AX-AP = ... 2%

IV. Zeitunabhingige Schrodingergleichung
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Nullpunktsenergie (Grundzustandsenergie)

klassischer quantenmechanischer
Oszillator: Oszillator:
Position exakt Position nicht
o bekannt exakt bestimmbar
of\\v.' \\‘;A\V.i \v/o Q\/ \/\ f \\\0

Potential
Aufenthalts-
wahrscheinlichkeit

Energieniveau

klassisch: E = 0 niedrigste Energie

QM: suchen Grundzustand von Operator, Hamilton: H = T +V (kinet. + potentielle
Energie)

Vo — Ep, wenn E sinkt = AX sinkt

Heisenberg: AX-AP > 2 = AP > 2L

da AX sinkt = AP steigt = E steigt und stabilisiert sich

Satz: Die Nullpunktsenergie Ejy = F‘T‘" ist der kleinste Energiewert, der mit der Hei-
senberg’schen Unschérferelation vertréglich ist.

Ubung (kommt vielleicht in UE): Energie eines harmon. Oszillators nur mit Heisen-
berg berechnen:

E = (H) = 55 (p?) + 222 (X?), Abschitzung nach unten:

Unschérferelation hier: (X?) - (P?) > % (weil (X)? = (P)? =0)

= (Einsetzen oben) £ = (H) > . (P?) + "2~/ oL

.. X Jd _ 1 mo*h? 1
suche Mlnlmum.im—%—TZW—o

= (P?)in = E((P¥)in) = Emin = 3100

IV.7. Resumee

wichtigste Axiome der QM und physikalische Interpretation

1. Ein Physikalisches System wird vollstandig durch einen Vektor |y) im Hilber-
traum (vollst. VR) beschrieben.

2. Die Physikalischen Gréflen, Observablen, sind hermitische Operatoren A im Hil-
bertraum.

3. Das Resultat einer Messung ist ein Eigenzustand (System ist dann im Eigen-
zustand), bzw. das Ergebnis selbst ist der Eigenwert, eines Operators: A|n) =
ay|n),a, € R Eigenwert.

IV. Zeitunabhingige Schrodingergleichung
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. Die Wahrscheinlichkeit fiir einen bestimmten Eigenwert ist gegeben durch |(n|y) ?
(Ubergangswahrscheinlichkeit), (n|y) heiflit auch Ubergangswahrscheinlichkeit-
samplitude, das ist Projektion von allgemeinem |y) auf das vollstdndige Ortho-

normalsystem {|n)}.

. Jeder allgemeine Zustand ist entwickelbar in vollstandiges Orthonormales Sy-
stem, also |y) = ¥, caln),cn = (n|w),|c,|? ist die Wahrscheinlichkeit dafiir, dass
Zustand |n) im allgemeinen Zustand |y) vorkommt.

. Der Erwartungswert von Messungen, die mit A beschrieben werden, also (A) =

(y|Aly) =Y, mCmcnan (m|n) = Z lca|*a, = (A)|, also der Erwartungswert von A ist
! N——" n

6]’]’1”
die Summe der Eigenwerte gewichtet mit |c,|?, also |c,|? ist die Wahrscheinlich-
keit, a, zu messen.

Wenn A = H dann ist a, = E,,, also die ’Anzahl der Klicks’ im Experiment.

. Projektionspostulat: (von Neumann)

Def. Projektionsoperator: P, = |n)(n|

Eigenschaften:

P> =P, P, P,=0-Orthogonalititsrelation

Y. P, =Y, |n)(n| =1 (Einheitsoperator) - Vollstandigkeitsrelation
Projektion: P,|y) = |n)(n|y) = c|n)

- |y) = X ln) {nlw) = X caln)

. Die Dynamik oder Zeitentwicklung eines Systems ist gegeben durch die Schro-
dingergleichung:
ih% v(x,t) = Hy(x,t) wobei |y(x,t)|> die Wahrscheinlichkeitsdichte ist (Born), und

H=T+V=-22 1y (kinetische + potentielle Energie).

T 2mdx?

. Unschérferelation zwischen MeBwerten: AA-AB > 1|([A, B])| wobei AA = \/(A2) — (A)2

IV. Zeitunabhingige Schrodingergleichung
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V. Drehimpuls, Spin und Statistik,
dreidimensionale Schrodingergleichung

V.1. Drehimpuls

h
|
=l
X
U

aus der klassischen Mechanik: Drehimpuls |

e-Tensor:
+1 Permutation gerade

Ejk=140 > 2 gleiche Indizes
—1 Permutation ungerade

— Komponenten des Drehimpulses: | L; = & X, pk
(z.B. Ly = €123x2p3 + €132%3p2 = X2p3 — X3P2)
klassische Mechanik — QM
X,p — X,P = —ihV Operatoren
niitzen Kommutator aus: [x;, px| = ihd i

unter Verwendung der Kommutatorrelationen erhilt man die Drehimpuls-Algebra:
(Berechnung siehe UE)

[L,',Lj] = ihgijkLk
[Li,x;| = ih€;jpxy
[Li, pj] = ih€;jxpi

suchen Eigenfunktionen und Eigenwerte des Drehimpuls-Operators:

es gilt Kommutator: [L>,L;] =0

(weil [Z,Z,Li] =L [L,',Lj] -+ [L,',Lj]Li = ih(SijkLl'Lk + 8ijkLkLi) =0)

= I? und L; haben gleiche Eigenfunktionen (UE)
wahle:i=3=1,

suchen Eigenwerte von L2 und L,

diese sind charakterisiert durch die Drehimpulsquantenzahl:

=3 N=0123...
(das folgt mathematisch aus der Drehimpuls-Algebra)
1=0,1,2,... ganzzahlig - Bosonen (Bose-Teilchen — Bose-Statistik) z.B. Photonen
oder [ = %,%,%,... halbzahlig - Fermionen (Fermi-Teilchen — Fermi-Statistik) z.B.
Elektronen, Protonen
bezeichnen Eigenwerte von L, — u = iim
m=—1,—1+1,...1—1,] m ... magnetische Quantetzahl

z.B. —1,0,1 oder —2,—1,0,1,2 = u hat (2/+ 1) Werte
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Eigenwerte und Eigenfunktionen

’LZYlm = hmY, ‘

Y ... Eigenfunktionen (Kugelflichenfunktionen, tabelliert, kann man nachschlagen)
1 1 1 ‘
z.B. Y()()Z (#)2 f’Y()()’dQ: 1 Yl(): (%)ZCOSQ Yl:l:l :i(i)zsineei"/’

8w

Z:2Ylm = hzl ) (l + 1)Ylm

{Y1,(0,¢)} bilden ein vollstandiges orthonormiertes System
hm und 7%1(1 + 1) sind die Eigenwerte

29.11.2011

V.2. Dreidimensionale Schrodingergleichung

erinnern: Drehimpuls

L= )?Xﬁ [xi,pj]:ih5l’j
——
Operatoren

Kommutator:

Li,Lj| =ihe; Ly = [[*L]=0 i=1,2,3= gemeinsame Eigenfunktionen
j j

Eigenwertgleichungen:

LYl =PI+ )Yy LYy = hmYy,

Y=Y(@,9) [=0,12,... m=—1I,...,0,....])
zB.l1=1 m=-1,0,1

dreidimensionale Schrodingergleichung:

72
Hy(X) =Ey(X) H= —%A%—V(J‘c’)

“ 7. . 2 2 2 . . .
dreidimensionaler Laplace-Operator: A = 2> + 2° 1+ 9~ in kartesischen Koordinaten
P P o2 T2 T 92

in Polarkoordinaten:

_li( 2i)+ 1 (inei)_‘_;a_z
2oV 9 T 2sin@a0 Y 90 r2sin? @ 0?2

Drehimpuls-Quadrat in Polarkoordinaten:

o (L9 ey L 9
Lr=-h (sin®8®(sm®8®)+sin2®a(l)2

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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Laplace-Operator:
h? ”1d ,0 L?
Al V= - — T (2
( 2m) 2m r? 8r(r 8r)+2mr2
= Schrodingergleichung unter der Annahme, dass das Potential kugelsymmetrisch
ist (V(X) =V (r))

“om2or " or T a2

+V(r)

P1ad, ,0 12
[ 2 v(,0,9) =Ey(r,0,0)

Ansatz: y(1,0,¢) = R/(r)Y;,(0, 9)

~n19d,,0 RA(I+1)
{gﬁg(r 5, tV )+ W] Ri(r)Yim(©,9) = ER/(r)Yim(©, )
jetzt (aber nur jetzt!) darf man Y kiirzen und
ehalt: . ‘ ‘ ' : gr—
K19, 4,9 RII+1)
g P v+ S R —eri) ] |

al (MeV)

tential zusammenfassen: ¥

auBerdem kann man zu einem effektiven Po- | \

V, =V
sy (7) (r)+ 2mr? a8

T T T T
0 20 40 60 80 100 120 140
Distance (fin}

(der letzte Term heiflt Zentrifugalterm)
z.B. Coulomb-Potential (siehe Abbildung Abbildung V.1.: Coulombpotential

= einfache Schrodinger-Gleichung

19 ,0

—— 55 (r"5) V. R =ER
o 12 (gr(r 8r>+ eff (r) | Ri(r) 1(r)
Vereinfachung: reduzierte Wellenfunktion

w(r) = rR;(r) %u:u':R—l—rR/ g—:zuzu”ZZR’—l—rR”

s 2
damits [£ 27 IR =22 + IR

2m
= U 27 (B = Vers(r)u(r) =0

das ist die eindimensionale Schrodingergleichung in der reduzierten Wellenfunktion
= leichter losbar

Normierung: 1 = [ |y(¥)|?d*x = [y |R(r)|2r2dr/ dQlY (Q)[?
4

1

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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= Normierungsbedingung:

= in drei Dimensionen braucht ein Po-

tential eine gewisse kritische Grofle, da- UleV)
mit iiberhaupt Bindungen existieren (es |
muss in drei Dimensionen nicht immer 600 400 200 5 200 400 600

I S I —

ein Bindungszustand existieren) r(pm)

Beispiel Wasserstoff-Atom: Coulomb-Potential
2

V=-¢
-

es gibt unendlich viele Zustiande

setzt man dieses V oben ein, so erhilt

me*
man: |E = ——— | entartet fiir alle / (alle
2h n?
1 geben den gleichen Energiewert)
30-11.2011 Abbildung V.2.: Coulombpotential H-Atom

V.3. Stern-Gerlach-Experiment - Spin des Elektrons

1. Teilchen im Magnetfeld (klassischer Zugang)

Ein geladenes rotierendes (spinning) Teilchen erzeugt einen magnetischen Dipol (ma-
gnetisches Dipolmoment).
§... Eigendrehimpuls, [i... magnetisches Dipolmoment (diese beiden sind parallel)

[i = yS|wobei y... gyromagnetisches Verhaltnis (Erklarung siehe Wikipedia, 70— wird
magnetisches Magneton genannt, glaub das ist die kleinste magnetische Einheit),
Y= g5, beim Elektron ist g =2

Dieser magnetische Dipol fi wird nun in ein Magnetfeld B gegeben (ji und B verschie-
den orientiert).

— Drehmoment [i x B, Dipol richtet sich entlang der Feldlinien aus (Kompass)

Energie (damit verbunden) |H = —[i - B

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung




Theoretische Physik L2 - Prof. Bertlmann 53

= Hamilton-Operator fiir ein Teilchen mit Spin:

H=—9S-B

2. Stern-Gerlach-Experiment

(1922), Silberatome (sehr kugelsymmetrische Anordnung + ein dulleres Elektron),
verwenden inhomogenes Magnetfeld (unten breiter als oben)

Dann wirkt au3er dem Drehmoment auch eine Kraft F durch das Magnetfeld auf den
Dipol 1

F = —VV = V[iB(weil Potential V = H da ruhend)

B in z-Richtung: (2... Einheits-
vektor in z-Richtung)

Classical

. prediction What was
B=B,2=( B oz )z
zZ (\ St oz ,)Z actually observed

hom inhom
!

Silver atoms

- [F=ars] :

Spin in z-Richtung ist experi- v

mentell durch die Kraft (Ablen- ! \ Furnace
kung) durch den Stern-Gerlach-
Magnet bestimmbar. Im Expe-
riment wurde eine Aufspaltung Inhomogeneous

in zwei Werte (up, down) beob- magnetic field

achtet (Verhéltnis 50:50). Also

der magnetische Dipol und da- Abbildung V.3.: Stern-Gerlach-Experiment
mit auch der Spin in z-Richtung S, hat zwei Werte: up, down.

Wir wissen, dass die Eigenwerte des (Eigendrehimpulsoperators) Spins:

S.n = mhn n... Eigenfunktion

m=—s,...,s = (2s+1) Werte = 25+ 1 = 2 (es gibt nur 2 Werte fiir m laut Experiment)

=|s=—

(itbernehme drehimpuls-Algebra, [ — s = 1)
Spinmessung mit wiederholten Stern-Gerlach-Magneten

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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Zy A

S-G S-G

Source i i
2 axis = s 0 | B e e e e e e e e e e e
2 No z

S-G S-G

Source S T e
7 axis 4@2 3 T axis T

2, —— T4 — 2

S-G S-G S-G

Source o L, L
7 axis % T axis I—@ 7 axis P——

Wenn der Stern-Gerlach-Magnet um Winkel 6 zur z-Achse gedreht wird, dann sind
die Wahrscheinlichkeiten fiir die Werte up und down:

., 0 ., 0
P(I1) = 1—sin’ 2 P(| 1) =sin® >

(| 1) entspricht dem Vektor (V), | |) entspricht (9), der Winke 6 wird von | 1) in Rich-
tung | |) gemessen) bei 6 = 90° = % =45° = P(up) = P(down)

Ein Spin%-Teilchen wird nach einer Drehung um 47 wieder identisch (Wahrschein-
lichkeiten gleich)! (Versuch von Rauch - Atominstitut - Neutroneninterferometrie)

1.12.2011

V.4. Mathematische Formulierung von Spin - Pauli-Matrizen

Elektronen-Spin ist ein Eigendrehimpuls und erfiillt mathematisch gesehen die Dre-
himpulsalgebra

L—S 1= 0, %, 1%,2,... — 5= %, %, ..., wir konzentrieren uns auf s =
iibernehmen Algebra vom Drehimpuls - Spin-Algebra:

B[ —

[S,',Sj] = ihgiijk [S’Q,Si] =0

suchen Darstellung im Spinor Raum, Basis im Spino-Raum wird gebildet durch ge-

meinsame Eigenvektoren von $2 und S,
erinnern Drehimpuls: Y, = |[,m), analog fiir Spin: |s,m), wir betrachten Spin s =
Spinoren:

N[ —

11 .

5+5) =11} spin up
|1 1>—]¢> spin down
550 =14 8P

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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es ist giinstig, die Pauli-Matrizen einzufiihren:

h - h
S 50 S 50| =1, ,3
= Spin-Algebra:
(0i,0/] = 2i€;jx O [62, ci|=0

Eigenwert-Gleichungen:

ol =+1 ==

Matrix o, hat zwei Eigenwerte, +1 und —1

I 0
=0=| 45 _

=0 InN=dlh=1

|T>==(é> |¢>==(?)

Wie ist S oder & zu verstehen?

{| 1)} bilden VONS:

Spinor-Darstellung:

s_(1 0
N0 —1
(oy, oy siehe spéter)
wobei 6; Matrizen sind, die im Spinor-Raum wirken (6 wirkt in einem anderen Raum)
Hamilton
H~S-B~ G6-B)|1)
Y7, 0iB;

(0;B; ... Linearkombination von Matrizen = 2 x 2-Matrix)

Definition Leiter-Operatoren (klettern in Spinleiter rauf und runter)

O+ = Oy £ i0)

ol =21 ot =2]
a1 =0 o |)=0

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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01 00
=0:=2{ 19 )%= 10
e (0t (0 i

=\ 10 =i oo

1. Teilchen im Zustand | 1), messen Spin entlang z-Achse
(mit einem Stern-Gerlach-Magneten wird in z-Richtung gemessen, ist das hin-
einkommende Teilchen im Zustand | 1), so wird es nach oben abgelenkt — +1,
ist es im Zustand | |), so wird es nach unten abgelenkt — —1)

(o 1) = +1(1[]1) = +1
2. analog fir Teilchen im | |)-Zustand: (] |o;| |) = —(| })|| }) = —1

Eigenschaften:

I 1
1 1> Z‘I’(G,')—O

Spin-Messprozess

3. Spinmessung in x-Richtung: beschrieben durch Observable o,
(bei der Spinmessung in x-Richtung liegt der Stern-Gerlach-Magnet in x-Richtung,
das Teilchen wird entweder nach hinten abgelenkt — +1 oder nach vorne — —1)

o) =++) o) =—[-)
= |+) = Lt |—) = Lt Eigenvektoren
=5 =5 igenvektoren von o,
. L1 (1 :
4. analog fiir oy = 5(;)  5( ;) Eigenvektoren von o,

Allgemeiner Spinzustand ist eine Linearkombination von | 1) und | |):

1S) = c1] 1) +ca| 1) | wobei ¢12 € C und [e;* + e = 1

(Summe der Wahrscheinlichkeitsquadrate = 1)
Spinmessung in x-Richtung durch Operator o, (im Zustand | 1))
(T lox| 1) = (1| |) = 0 allgemein Erinnerung: Erwartungswert vom Erwartungswert
eines Operators A
(A) = ¥, |cnl*an, damit (oy) = S(+1)+ 5(—1) =0

6.12.2011

V.5. 2 Teilchen mit Spin

Moglichkeiten: 1+ T4 +7T 1l - 4 Moglichkeiten der Spin Einstellung
jedes Teilchen hat ’seinen’ Hilbertraum, wenn man das gemeinsam betrachtet multi-
pliziert man sie mit dem Tensorprodukt: | 1) ®| 1)

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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Skalarprodukt: H ... Hilbertraum
(T I .1 )=1 Zahl
~— ~~

€H,q; €H

auBeres Produkt:

nal - Gao=(g o)

Tensorprodukt:
e dimHpjjee = da — 2 dimHgo, = dp — 2 (3,4,... moglich)

—~
€Hy €Hp

dim (HA ®HB) =dy-dp

N
O =
N——
®
N\
O =
N——
Il
(@) —
ey —
— O =
SN— SN—
Il
OO =

S

a mn r
allgemein: (b) ® .

S

Tensorprodukt von Operatoren: z.B.: o, wirkt in A, zur Verdeutlichung oft dazuge-
schrieben, ¢, wirkt in B

0 0 1 O
GA®GB—<01)®<1 0)_ 0 0 0 -1
* < 1 0 0 -1 1 0 0 O
0 -1 0 O

allgemein fiir beliebige Matrix D: ( ¢ d ) ®D = ( cD dD )

Regel: fiir A, B Matrizen und x,y Vektoren: | (A®B)(x®y) = Ax® By | (A wirkt nur auf x
und B nur auf y weil diese jeweils im selben Hilbertraum sind)

2 Spinteilchen:

[ Da@| M= DT =11 (Notation)

betrachten nur Spinanteil der Wellenfunktion: 1,
totale Wellenfunktion: |y);,iai = |W) 0resteir @ |Spin)

im Hamilton: H = % +V (x) + Hspin Hgpin = —uS-B

V. Drehimpuls, Spin und Statistik, dreidimensionale Schrodingergleichung
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Gesamtspin:

§— 5 4 5®)

in z-Richtung (3 4 Eigenzustande): S;| 11) = (SgA) +S§B))| MNa® | Mg =h(5+ )| 11)

=S| =01 Sl =-AL) ST =5[I1=0

13.12.

System von 2 Teilchen mit Spin

™, U1, 11, 4L ... 4 einstellige Moglichkeiten
Zustande: | 1)4 ® | |)p Tensorprodukte im Hilbertraum H = Hy ® Hp (Alice-Bob)
—_—

1 Zustand

Spin total, gesamt S=S54) 4+ 5B 5=, +55—51,0 S=1... Triplet,S=0... Singlet
—

Eigenwerte

Spin in z-Richtung: Sz = S(ZA) +S(ZB) —m-h=s
+1
m=—s,...,+s mh = (mg+mp)h — < 0
-1

(1 + 1) Triplet
(1L —J1) Singlet

fiir 0 haben wir eine Entartung:

fiir +1: Spin parallel nach 11
fiir —1: Spin parallel nach ||

Tensorproduktregel: (A-B)(|x) ®|y)) = alx) + Bly)

Sz MA@ | La= (S + 5 1@ )5, wobei S auf | )4 wirkt
genauer: | S5 =S4 @ 15| (4x4)=(2x2)®(2x2)

analog: S(ZB) =1,®55
Gesamtspin ist Summe der Teiloperatoren

Sz =S5 +59

Spin-Messung von Alice und Bob

Alice (links) und Bob (rechts) messen mittels Stern-Gerlach-Magneten den Spin in z-
Richtung von 2 Teilchen. Dieser Vorgang wird Beschrieben durch das Produkt der Teiloperatoren
in z-Richtung.
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oM L i) [ B

oo ae| s = (o) ©1p)- (L@ o) 1ae | s = 0f

~——— N —r
! - 0 O
Erwartungswert | 1)) =|1a®|{)s

tla®{|p(of @) Pa®| ) =—

(M a® (1 |p(og @ 07)| Da®@ | P =+1

Wenn wir den Stern-Gerlach-Magneten in x-Richtung drehen — kommt nix raus —
Erwartungswert 0:
Spinmessung von Alice und Bob in x-Richtung (| 1))

T1a®{ [plog@cd) | Da®]| )=

=T logINa (Llogl =114 I Ds=
[4)4 )8 =0 =0

14.12.

V.6. Spin und Statistik

Geg.: 2-Teilchen-System - identische Teilchen
Wellenfunktion abhéngig von:

e Koordinaten (¥ fiir Teilchen 1 bzw. X, fir Teilchen 2)
o Zeit

Bezeichnung: y(X;,%,t)
Die Zeitentwicklung des Systems (— Dynamik) wird beschrieben durch die Schrodin-
gergleichung:

L0 o
zhgw(xl,xg,t) =Hy(X],X,1)

Hamiltonoperator:

h h
He—— A — A
EyA B 2+ V (¥1,%,1)

wobei gilt:

e A| bzw. A, ... Laplaceoperator des 1. bzw. 2. Teilchens, kinetische Energie des 1.
bzw. 2. Teilchens
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° —%Al bzw. —%Az ... Potential des 1. bzw. 2. Teilchens

o V(X1,X2,1)... potentielle Energie

Interpretation: Wahrscheinlichkeitsdichte: |w/(¥;,%,,t)|*d>x1d*x, (fiir Teilchen 1 im Vo-
lumselement d>x;, fiir Teilchen 2 im Volumselement d>x,).

Normierung: /\l//()‘c’l,y‘c'z,t)\zd3x1d3x2 =1

fiir zeitunabhéngige Potentiale: V =V (X,X,)

LEt

Stationére Losungen: y(X1,X,t) =e 'y (X],X2)

wobei E ... totale Energie des Systems
zeitunabhéngige Schrodingergleichung: Hy (X1,%,) = Ey(X],X2)

Bosonen - Fermionen

Spin: s=0,1,2,... s:%,%,...
Beispiele: s=0: ™ K s=1:¢" n
P ~' ;) 2 ) p N ,
Pionen Protonen Neutronen
s=1:j,Wr\W~.Z, G
—— ~~—~
W-Bosonen  Gluonen
s = 2 : Graviton
erfiillen: Bose/Einstein-Statistik Fermi/Dirac-Statistik
kleben aneinander entfernen sich voneinander

Annahme:

Teilchen 1 sei im Zustand y,(X]) mit Quantenzahl a

Teilchen 2 sei im Zustand y,(X;) mit Quantenzahl b

in diesem Fall ist die Wellenfunktion ein Produktzustand fiir das Totalsystem:

y(X1,%) =y (X)) - wp(X2)

einfaches Produkt — Wellenfunktion ist faktorisierbar

d.h. wie in der klassischen Physik konnen wir die Teilchen getrennt betrachten
(klassisch wire: Teilchen 1 hat immer QZ a, nie b und Teilchen 2 hat immer QZ b, nie
a)

in QM: Teilchen 1 im Zustand yy (X)), Teilchen 2 im Zustand y;(X;)

fundamentaler Unterschied in QM: z.B. bei ¢~ ist QZ a oder b nicht fix zuordenbar
Quanten sind prinzipiell ununterscheidbar - dem miissen wir Rechnung tragen durch
Superposition

Wellenfunktion:

Vi (X1,X2) = N[Wa(X1) Wp(X2) £ Wi (1) Wa (%2)]

N... Normierung — \% Spin
Bosonen — vy, Fermionen — y_
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Satz: Zwei Fermionen konnen nicht in ein und demselben Zustand sein.
Begriindung:

wenn Y, = Y, wire = Y_(X1,X2) = N[Wa(£1)‘Va<f2) - Wa(fl)‘//a(ié)] =0

Pauli-Verbot: (W. Pauli, 1925) Zwei ¢~ im selben Spin-Zustand konnen sich nicht am
selben Ort aufhalten.

’am selben Ort’ entspricht 'im gleichen Orbital’

Also zwei Elektronen im gleichen Orbital miissen verschiedenen Spin haben.
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VI. EPR, Relativitatstheorie - Vortrage

15.12.

Vortrag zu EPR von Natalie Romanov, Film zur Quantenmechanik :-D

Vortragsskriptum siehe Anhang 1 (EPR_Paradoxon_Vortrag.pdf)
Folien des Vortrags siehe Anhang 2 (EPR_Paradoxon_Folien.pdf)

10.1.

Vortrag zu Einstein’s Relativitatstheorie von Philipp Kohler

Folien zum Vortrag siehe Anhang 3 (Relativitaet_Folien.pdf’)

11.1.

Fortsetzung Vortrag

Anmerkung: Da Prof. Bertlmann das nichste Kapitel, Entanglement, mit Nummer
VII beschriftet hat, nahm ich an, dass die Vortréige und insbesondere EPR ein eigenes
Kapitel darstellen. So stimmt die Nummerierung wieder.
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VIl. Entanglement

12.1.
verschriankte Quantensysteme; Bell-Ungleichung, Grundlage der Quanteninforma-
tion, Nonlocality (Nichtlokalitét)

VIl.1. Entanglement

Schrodinger (1935): Gesamtsystem aus 2 Teilsystemen

Definition: Verschrankter Zustand (— spater Entanglement): wenn Gesamtsystem
im wohldefinierten Zustand ist, die Teilsysteme aber nicht

betrachten System von 2 Teilchen mit Spin % (bzw. Photonen mit vertikaler und hori-
zontaler Polarisation)

= Beschreibung mit Tensorprodukt

— 4 unabhéngige Tensorprodukt-Zustande (Basis 4-dim, 4 Produktzustéinde)

o [MRIN=INIT=[11)
o [T)®[])
o [L)®[T)
o [L)®[])

nennt man auch Separabel (Teilsysteme in genau definiertem Zustand, z.B. Alice im-
mer | 1), Bob immer | 1) = | 1) ®| 1))

z.B. beim dritten Zustand ist | |) € H4 von Alice und | 1) € Hp von Bob (Hilbertraume)
allgemein: System mit 2 Freiheitsgraden

verschriankte Zustiande: Superposition von Produktzustinden (Basis 4-dim Raum —
Basiswechsel)

)

ADHEIDI)

ly

5i-

1

)=

(RVIRVEIRYIRD)

Bell-Zustéande

ly*) und |®*) sind wohldefinierte Quantenzustinde — Zustinde der Teilsysteme
sind nicht wohldefiniert

z.B. fiir |y*) mit Alice | 1) und Bob | |) oder Alice | |) und Bob | 1) (mit Wahrschein-
lichkeit je 50 %)

aber es gibt immer eine Korrelation der Messwerte

— immer wenn Alice | 1) findet, findet Bob | |)

= Grundlage der Quanteninformation
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Hilbertraum besteht entweder aus Separabel oder aus

Entanglement E
H=HsUH @ ®H
sUHE

separable Zusténde bilden eine konvexe Menge

VIl.2. EPR-Paradoxon

(Einstein, Podolsky, Rosen) 1935
System mit 2 Teilchen = Korrelation der Messwerte

= EPR hat geschlossen, dass die QM unvollstindig ist — X € i ?
Realismus fehlt P
QM ist vervollstandigbar = 30 Jahre spéter Bell

00—

VIL.3. Bell’sche Ungleichungen EPR-Quelle

J. S. Bell 1964:
EPR-Paradoxon (Debatte zwischen Einstein und Bohr) kann experimentell entschie-
den werden

Bell'sches Theorem: In bestimmtem Experiment sind alle LRT (Lokal Realistischen
Theorien) mit der QM unvertréglich und diese Unvertriglichkeit kann man mit der
Bell’schen Ungleichung zeigen.

Bell-Ungleichung: wir machen Spinmessungen bei Alice
und Bob fiir verschrankten Zustand

Observable von Alice (d zeigt in Richtung des Stern- T%&

Gerlach-Magneten): Alice

A% (@) =A@, A )==+1, _0
Realismus kein Teilchen

Observable von Bob: . ~
BO"(b) — B(b,A) = £1,0

A sagt, dass A(d,A) schon vorher gegeben — egal ob gemessen wird oder nicht
A ... verborgener Parameter, hidden variable theory - HVT

G-d +— A%5(a)

G- b+ B (b)

Erwartungswert fiir gemeinsame Spinmessung:

/ dAp(A )B(b,A)| Bellsche Lokalitét

VII. Entanglement
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wobei p(A)... Wahrscheinlichkeitsfunktion; beliebige, normierte ([dAp(A) = 1) Ver-
teilungsfunktion

A(@,A) - Alice, ist unabhingig von Bobs Messung, A unabhéngig von 5 und umgekehrt
= Ungleichung fiir den Erwartungswert ableiten:

d -

E@h-@ B, )= /dpA(Ez’,/’L)B(E,/I) _A@A)B(,A) =
Bob #dndert Richtung

_ /dpA(Ei,/I)B(E,?L)[l +A@, 2B M) —/dpA(a’,/l)B(B’,)L)[l +A@, 2)B(B, )]
A-B|<1 A-B|<1

(Nullsummenerweiterung) da gilt |A —B| < |A|+ |B]

= |E(@,b)—E@D)| < /dp[l +A(@,L)B(b, )] +/dp[1 +A(@,1)B(b,A)]

/dp —1 = |E@B)—E@F) <2+|E@.F)+E@,b)

= ||E(@,b)—E(@,b)|+|E@,b)+E@,b) <2

Bell-Ungleichung, gilt fir alle LRT; wurde von Clauser, Horne, Shimony, Holt abge-
leitet — CHSH-Ungleichung

inQM — Observable: 3-d® 6 -b
davon Erwartungswert im Zustand |y ~):

Eou(@,b) = (y~|6d® 6bly~) = —db=—cos  (a—p)

wéihle Bell-Winkel so, dass:

T 3n T
o — I /:450__ o /:_ I -
ao—B=a - 2 a—p 2 o 1
= cos( )_\/§ cos(3ﬂ)— V2
2 4 2

setzen ein in CHSH:

QM 2v2<2 LRT

WIDERSPRUCH = QM verletzt Bell-Ungleichung
= Realismus UND Lokalitat in QM nicht gegeben = QM nichtlokal (nonlocal)
Experiment: Zeilingergrumme (1998): S,,, = 2,73 £0,002

Die Natur ist nichtlokal!

VII. Entanglement
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VIIl. Dichtematritzen

17.1.

Wichtig fiir Statistik (Mischung von verschiedenen Zustianden)

VIII.1. Allgemeine Eigenschaften

e bisher: Zustand gegeben durch Vektor |y) € H (Hilbertraum)
— reiner Zustand (nichts Klassisches dabei)
als Superposition |y) =a| 1) +5b| )

e erinnere: Erwartungswert von Observable A
(A) = (ylA|y) = wichtig fiir Experiment
=Y lenlan = Alyn) = an|yn) ap €R

Um den Erwartungswert von A zu reproduzieren, ist folgende Def. naheliegend:

Definition: Physikalischer Zustand wird durch eine Dichtematrix definiert:

= [v)(o]|
trD = Z n|y){(e|n) = <p\Z\ = (o|y)

Pn

P, ... Projektionsoperator P,% =P ZP,, =1
n

p=Ily)yl| (3x3)

= Eigenschaften von p:

e p' = p = Eigenwerte sind reell[]]

trp =1=(y|y)
e p?> = p reiner Zustand
e p>0

= Erwartungswert von A:

(o] = (y|A
trly)(y]A =|y) (0|
p

U+ ... adjungiert, entpricht T, also transponiert und komplex konjugiert
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(A) =rtrpA

Erwartungswert

(A) =Y, |calan n... Eigenwerte / Messwerte
lca|? ... Wahrscheinlichkeit fiir a, (Haufigkeit, mit der der Wert a, vorkommt)

N,
’Cn‘zzﬁn

Gemischter Zustand

Es gibt N Objekte total: davon sind N; im reinen Zustand |y;,).
Wahrscheinlichkeit fiir |y):

N‘
R=
N

Erwartungswert fiir Observable A:

(A) = ZPKWA\‘I/:‘) = Zpiai

fithrt zur Definition der Dichtematrix:

Summe aus reinen Zustinden

p =) pilvi){vi

mit0<p; <1 Y;pi=1
Erwartungswert:

(A) =trpA

Eigenschaften - gemischte Dichtematrix
o pf=p
o trp=1
2 v 20w Lur
o pm=Yipilvi(wil #p

8 =trp? < 1... MaB fiir Mischung
% <d6<1 wobeid... Dimension des Vektorraums (d =2... Spin)

=0= % Omax - - - maximal gemischt

Gleichung fiir zeitliche Entwicklung von o

— von Neumann-Gleichung, gehen aus von Schrodingergleichung:

. 0 ad jung. . 0
i |y) =H|y) "S5 —iio(y| = (y|H  (H'=H)

VIII. Dichtematritzen
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ih%p = ih([y)(w|+ [w)(¥]) = Hly)(y|+|y)(y|H =Hp — pH = [H, p]

% :%[H,p] =p(1)

Quantenaussagen zur Diffusionsgleichung

VIll.2. Beispiel Spin
2-dim Raum (2 x 2-Matritzen)

p € HS Hilbert-Schmidt-Raum

jede allgemeine 2 x 2-Matrix ist gegeben durch 1, oy, 6, o; (Pauli-Matritzen)

1 —
—|p= 5(1 + _d, 6 +0)
Gewichtung

tro; =0 Bloch-Darstellung a...Bloch-Vektor, beschreibt Kugel

aus p? = p - reiner Zustand

= |@* = 1 = reine Zustsande auf Oberfléiche der Kugel
aus p* # p

= |d|* < 1 = gemischte Zustande sind innen wenn |d|*> — 0 = maximal gemischter Zustand

1
:>p:>pmax:§1

Beispiel: |d|> =1 d|| z-Achse
p+ = 3(1+ o) nach oben polarisiert

pi=(o o) =100
p=t-a)= (o 1) =1001

1
Pmax = ) (pr+py)

Diese Zerlegung ist nicht eindeutig!

18.1.

VIII. Dichtematritzen
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Dichtematrix fiir Spin J

rein

p=1na1=(g o)

p=toei=(o 1)

P ZZPiPirein, wobei 0 < p; <1, Y pi=1
i i

gemischt

= maximal gemischte Dichtematrix

1 1
Pmax = E(pT‘i‘pi) = 51

1 1
—1== 'max 'max
5 Pmax 7 P

:>pr%zax:4

= gemischt
und MaB fiir Mischung:

1 1 .
8 =1rpiu = Ztrl = 5| maxmix

Maximal gemischte Dichtematrix zerlegbar in:

1
Pmax = 5 (PT + P¢)

=... andere Zerlegung (nicht eindeutig)

Satz

Ein und dieselbe gemischte Dichtematrix ist auf verschiedene Weise zu erhalten
(nicht eindeutig).
Physikalische Vorhersagen nur von Dichtematrix abhéngig

(A) =trpA

Also physikalisch kénnen wir verschiedene Zerlegungen die zur selben Dichtematrix
fithren nicht unterscheiden.

Verschiedene Typen interpretieren wir als verschiedene Ausdriicke ein und dersel-
ben unvollstandigen Information, die wir iiber das System haben.
Das fithrt zum Entropiebegriff in der Quantenphysik (diese misst den Grad der Un-
bestimmtheit in einem Quantensystem).

) Einheitsmatrix

VIII. Dichtematritzen
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Satz (Thirring) In gemischtem Zustand haben wir nur teilweise Information uber das
System. Die Entropie misst, wie viel Information zur maximalen Information fehlt
(wie weit py,ix von p,.;,, entfernt ist).

von Neumann Entropie:

S(p) = —trplogy(p)  logy(x) =1 5

(2-dim Raum)
S(p) =—Y Ailog A A;...Eigenwerte von p
i
Beispiel: P, = %1 max mix
S(Pmax) = —3logy 3 — 3logy 3 = —3 - (log, 1 —log,2)-2=13-2=1

Beispiel: reiner Zustand: |o) =

(1) +e11)

1 1 e ic diag 1 0
:>pa:]a><a|:§ eia 1 — 0 0

—[S(pa) = —1-logy (1) —0-1og,(0) = 0
=0

S

VIII. Dichtematritzen
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Teil Il.

Statistische Physik



Theoretische Physik L2 - Prof. Bertlmann 72

l. Thermodynamik

I.1. Wahrscheinlichkeiten

Zufalliges Ereignis:

e Ein Ereignis kann unter bestimmten Bedingungen eintreten oder nicht.

e Die Wahrscheinlichkeit ist eine quantitative Abschiatzung eines zufélligen Er-
eignisses.

e Bei n Ereignissen tritt ein Ereignis mit Wahrscheinlichkeit w = % auf.

o m gleiche Ereignisse treten mit Wahrscheinlichkeit w = 7 auf.

e w=0... unmoglich, w=1... sicher

e Wahrscheinlichkeiten konnen addiert (irgend eines von mehreren Ereignissen)

und multipliziert (gleichzeitiges Auftreten von mehreren Ereignissen) werden

Beispiel:
5 schwarze, 3 griine und 2 rote Kugeln:

e Wahrscheinlichkeit fiir 1 griine Kugel: w = - = 0,3

e Wahrscheinlichkeit fiir 1 griine oder 1 rote Kugel: w = 15+ % =0,5

e Wahrscheinlichkeit fiir griine und dann rote Kugel: w = 15 - {; = 0,06

wiederholte Versuche:

n Versuche, bei jedem Versuch ist die Wahrscheinlichkeit fiir ein Ereignis w
Wahrscheinlichkeit, dass ein bestimmtes Ereignis m mal auftritt:

!
Winn = (Z) w" (1 —w)" | (Binomialverteilung), wobei (:1) = n

m!(n—m)!

fiir grof3e n,m ist die Stirling-Formel eine gute Approximation (auch schon bei z.B.
n =20 ganz gute Approxiomation):

n—oo 1 _
n! ~ V2an"T2ze "

Binomialverteilung m’ nerB Gaullverteilung
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| I
262

= | Wmn =

2no

wobei o = y/nw(1 —w)... Breite der Gaullverteilung, x = m —nw, (x' = £ = =)

(o2 (o3

I.2. Brownsche Bewegung

Robert Brown (Botaniker): Hat die Bewegung von mikroskopisch kleinen Teilchen in
Flissigkeit untersucht (1827).

Erklarung: Albert Einstein, 1905 - Brownsche Bewegung als Test fiir molekularkine-
tische Theorie der Warme

J. Perrin 1908: Experiment, Brownsche Bewegung gemessen, Einstein-Relationen be-
statigt

19.1.

Modell: 1-dim

1. Teilchen zur Zeitt =0 am Ort x =0
2. innerhalb Zeitspanne ¢t = 7 legt Teilchen Wegstrecke x = +b zuriick
3. jeder neue Schritt vom vorherigen Schritt unabhéngig

4. jede Richtung + oder — gleich wahrscheinlich

betrachten folgende Orte: x,, ,(t =nt) = (2m—n)-b
Wahrscheinlichkeit, das Teilchen am Ort x,,, zur Zeit

t = nt zu finden (Binomialverteilung): m=2
n\ nm 4T 3T2T T
w(Xmn) = m " (I—w) Y ol el e
| | |

| |
1 0 b 2b 3b 4b

nach jedem Schritt w = 35

n\ 1., 1., _n _a(n
i) = () G = ) =2 Wil
Annahme: n,m grof3, auch n —m grof3 = Binomialverteilung m
— GauB-Verteilung (verwenden Stirling-Formel: n! ~ 2T re ™)
BV — GV: Winn = ! e_% , wobei 0 = \/nw(l —w) =1
) \/EG o

I. Thermodynamik
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T,b... fix vorgegeben, w... Wahrscheinlichkeit, Teilchen am Ort x zur Zeit 7 zu finden

1.3. Diffusion

Ubergang von mikro- in makro-

Physik: sehr viele Teilchen, jedes Partition
fiihrt Brownsche Bewegung aus,
es gelten Gesetze fiir groBle Zah- . F-'y Diffusion ®c o °
len ®e — e o |°
— stochastische Bewegung, ° ° °
Wahrscheinlichkeitsdichte o,
Teilchendichte p e e e

Diffusion: Durchmischung von zwei Substanzen bis zur vollstandigen Durchmischung.
Bereiche hohere Konzentration gehen iiber in Bereiche niedriger Konzentration.
Gehen aus von der Wahrscheinlichkeit fiir grofle Zahl von Teilchen (diskrete Punkte-

verteilung — kontinuierliche Punkteverteilung), also Y w(x,,) = [ dxo;(x) normiert |

1 2 : S
W(Xmn) = |0 = \/m-e aDi wobelD::2—T...D1ffus1onskonstante

o;(x) ist Wahrscheinlichkeitsdichte, ist normiert ([ o;(x) = 1)
Wahrscheinlichkeitsdichte o;(x) identifizieren wir physikalisch mit Teilchendichte p; (x)
o;(x) = py(x) ist Losung der Diffusionsgleichung:

d d>
s (x) = Dﬁpt (x)

2
Losung: p;(x) = \/ﬁ e~ 4 fur Anfangsbedingung bei r = 0 sei p,—o(x) = d(x) (Delta-

Funktion); allgemeine Losung:

1 o

)2
Pl = e [ e () wobed pro() = ()

in 3 Dimensionen:

I. Thermodynamik
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(QM von Neumann Gleichung)
% p:(X) = DAp;(x) - Diffusionsgleichung

(identisch mit Warmeleitungsgleichung)
erinnern an Kontinuititsgleichung: Mechanik - Massenerhaltung:

-

P+Vi=0

ist erfiillt, wenn Def. Diffusionsdichte

. - 2_
Jjp=—DVp Vet Diffusionsgleichung

(1. Fick’sches Gesetz) (2. Fick’sches Gesetz)

1.4. Beziehung zur Theorie der Warme

Wiarme — Eigenbewegung der Teilchen

Diffusion geschieht aufgrund der thermischen Eigenbewegung der Teilchen
Wirmeleitung ist dquivalent zum Diffusionsprozess

Diffusionsgleichung = Warmeleitungsgleichung

Konzentrationsausgleich durch Diffusion dquivalent zu Warmeausgleich — thermi-
sches Gleichgewicht

betrachten Verhalten von Brown’schen Teilchen unter einer Kraft F:

Bremswirkung durch Teilchen = Teilchen erreicht Grenzgeschwindigkeit ¥ = BF, wo-
bei B... Beweglichkeit; v ~ F im Medium, keine freie Bewegung!

Definition Beweglichkeitsstromdichte: | jz = p¥| p... Teilchendichte jz = pBF

Kraft als Potential V: F = —VV = jg = —pB%V
es erfolgt Gleichgewicht, wenn Balance zwischen Beweglichkeit und Diffusion herrscht:

= jg+jp=0

erinnernd Diffusionsstrom: jp = —D%p, wobei D... Diffusionskonstante
interessieren uns fiir Teilchenzahldichte p im Gleichgewicht:

= —pBVV —DVp =0

das ist eine Differentialgleichung fiir p, 16sen: [ %p =B vy

lnp:—gV—l—lnc:> p(x):c.e D (x)

Die Teilchendichte ist also abhéngig vom Potential, dass die Teilchen der Brownschen
Bewegung haben.

I. Thermodynamik
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Vergleichen Resultat mit molekularkinetischer Theorie der Warme, Wahrscheinlich-
keitsdichte der Mikrozustdnde im thermischen Gleichgewicht ist gegeben durch die
Boltzmann-Verteilung: p = ¢-¢ &7, wobei E ... Energie des Systems, T ... Temperatur,
k... Boltzmannkonstante

= kiT =|B= kRT (Einstein’sche Beziehung)

also Beweglichkeit ist Diffusion durch Temperatur; bei kleinen Temperaturen steigt
B, damit wird jz groB (Supraleitung’)

= erhalten von Thermodynamik unabhéngige Bestimmung der Boltzmann-Konstante
Experiment: Perrin (NP 1926), hat Einstein-Beziehung bestétigt!

aus Vergleich folgt: 2

I. Thermodynamik
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Il. Entropie

fundamentale Thermodynamik, Zustandsgrof3e, beschreibt Zahl der Mikrozustiande,
die durch bestimmten Makrozustand realisiert sind

Entropie ist extenisve Grofle, wenn z.B. ein Volumen V in V; (5 Teilchen) und V, (kein
Teilchen) geteilt ist, ist die Entropie kleiner, als wenn die Teilchen auf das ganze
Volumen V verteilt sind. Entropie steigt wenn das Volumen grof3er wird.

Entropie - thermodynamische Sicht, Clausius 1865 (ph&dnomenologisch)

statistische Sicht, Boltzmann 1877, Ma8} fiir Zustandsdichte der Mikrozustéande

II.1. Entropie - thermodynamische Formulierung

Y
ST
wobei S... Entropie, dS... totales Differential, Q... Warmeiibertragung (klein) (+ bei
Zufuhr, - bei Abfuhr), T ... Temperatur

bei irreversiblen Vorgéangen: dS = STQ + %, OWyiss > 0... dissipative Arbeit, die dem
System zugefiihrt wird (Reibungsverluste)

ds bei reversiblen Vorgéngen

2. Hauptsatz der Warmelehre: (Clausius) Es gibt keinen Kreisprozess (d.h. zyklisch
arbeitende Maschine), mit einziger Wirkung, Wiarme vom kélteren zum wéarmeren
Reservoir zu transportieren

251 Nullpunkt der Entropie ist festgelegt durch.

3. Hauptsatz der Warmelehre: Die (klassische) Entropie wird beim absoluten Null-
punkt der Temperatur 7 =0 null, also: S=0<T =0

= der absolute Nullpunkt kann nicht in endlich vielen Schritten erreicht werden:
S(T)

A S, (T) S ,,(T)

adiabatisch/
isentrop

isotherm

> T
A... extensive GroBe; = absoluter Nullpunkt nicht erreichbar. (derzeit ca. 107° K
erreicht!)
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1. Hauptsatz der Warmelehre: dU = §Q+ 8W (Anderung der inneren Energie = Warme-
anderung + Arbeit); U ... innere Energie, W ... Arbeit (am oder vom System geleistet)
Bemerkung: wenn dU = 0 - adiabatische Verschiebung der Wande: V -V +dV S —
S+dS O6W = —pdV

= 00 =—0W = 60 = pdV = Entropie dS = 5?Q =—

Zustandsgleichung fiir ideale Gase: p-V = NkT = p = NT"T

d av
:>dS:Nk7V /dS:/Nk7:>S:Nkan:>S:kanN

VN .= Q= |S=kInQ|Boltzmann

I1.2. Entropie - statistische Formulierung

Makrozustand wird erklart durch das Verhalten der Mikrozustiande der Atome (Mi-
krokomponenten).

Mikrozustinde: Gegeben durch Angabe aller Orte und Impulse der Teilchen. (¢, p)...
Phasenpunkt, Punkt im Phasenraum (2-3 = 6)-N Dimension (N ... Anzahl der Teil-
chen im System).

Es gelten die klassisch kanonischen Gleichungen der Mechanik (z.B fiir zeitliche Ent-
wicklung). Die Zeitliche entwicklung fiihrt fiir jeden Punkt im Phasenraum zu ei-
ner Phasentrajektorie. Alle moglichen zugéinglichen Phasentrajektorien bilden das
Phasenraumvolumen Q (bei gegebenen Makro-Randbedingungen).

Entropie: ist ein Maf fiir das zugéngliche Phasenraumvolumen, unter gegebenen
Makro-Randbedingungen, also ein Ma8} fir die Anzahl der Mikrozusténde.

Je grofler die Entropie ist, desto unbestimmter sind die Mikrozustéinde, also desto
weniger Information tiber die Mikrozustéande ist vorhanden.

Fundamentales Postulat der statistischen Physik: Jeder Mikrozustand in einem abge-
schlossenen System im Gleichgewicht kommt mit gleicher Wahrscheinlichkeit vor. =
abgeschlossenes System hat maximalen Energiewert (Prinzip der maximalen Ener-

gie).

Boltzmann-Formel (1877):
S=k-InQ

wobei k... Boltzmann-Konstante, Q... Phasenraumvolumen
S ~ N extensive Grofle, A, B unabhingige Systeme:

-Q'AvereinigtB =Q4-Qp = SAvereinigtB =84+SB

II. Entropie
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2. Hauptsatz modernere Formulierung: Ist ein System zu 2 Zeiten ’vorher’ und 'nach-
her’ von der Umgebung isoliert, d.h. iibt es keinen dauernden Einfluss auf die Umge-
bung aus, dann gilt im Gleichgewicht, dass 65 > 0. Also AS=S(t,) —S(¢;) > 0 fur r, > 1,
also warm — kalt, und nicht umgekehrt.

Spin Beispiel: 5N Spin %, davon 3N Spin 1, 2N Spin |; Frage: Entropie des Spin-
Systems (angenommen N = 1 = 5 Spins): Moglichkeiten: ™11, ™ML T ... =
10 Moglichkeiten

SN S5N)!
= Phasenraumvolumen Q = ( ) = (5N)

2N (2N)!(3N)!
fiir N — oo: Stirling-Formel (n! ~ 27rn”+%e*", fiir n — o tragt nur »n" bei)

5NN 2 3
= Q0= _ 5N1n5+lnN672N1n2+lnNef3Nln3N _ efSN(fln5+§ln2+§ln3)
o IN2N3 N3N o o

(weil InN nicht beitragt - kann man vernachléssigen, aul3erdem Trick: —In5 = —% In5—
%lnS)

Qe NVGWEIHINY g - —5N(§ln§ +§m§)
bindre Entropiefunktion: 4(n) = nlnn + (1 —n)In(1 —n), fir n = % oder % = InQ =
—5Nh(n),= S = —5N -k-h(}) = S = 3,36Nk
(bei Beispiel 2) AS = 207k)

26.1.

II. Entropie
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lll. Thermodynamische ZustandsgroBen
und Verteilungen

lll.1. Temperatur als GleichgewichtsgroBe

Geg.: 2 Systeme A und B, die voneinander isoliert sind. Jedes System sein in seinem
inneren (thermodynamischen) Gleichgewicht.

Charakterisieren Systeme durch: innere Energien U4, Up und Entropien Sy, Sp

bringe Systeme in Kontakt: = es gibt Energiefluss zwischen den Systemem

vorher Uy — Uy +u nachher vorher Ug — Ug —u nachher (u klein)

= es gibt auch eine Entropieinderung (Entropie als Funktion der inneren Energie
gesehen: S =S(U))

vorher: Sy = S(Uy) — S(Us + u) nachher vorher Sgp = S(Up) — S(Up — u) nachher
(vorher: Systeme isoliert, nachher: Systeme in Kontakt)

Gesamtentropie: wird maximal

S = Sa + Sp — max., wenn die Steigung der Tangente 0 ist, da S=S(U) = j—g =0

: : : e : . ds
Also im Thermodynamischen Gleichgewicht ist die Entropie maximal, = 0= 0=
ds ds . . oo .
ﬁ = ﬁ (kein Minus weil einmal +u, einmal —u)
Tayl ds ds
(S = Sa(Ua+u)+Sp(Up —u) =" Sa(Ua) +Sp(Up) + (5 — 2By ut )
dUy dUp
—_—

20
legt nahe, eine thermodynamische Gleichgewichtsgrof3e zu definieren:

-1
(absolute) Temperatur T := (—dilg]))

0. Hauptsatz der Thermodynamik: Es gibt bei Energieaustausch von zwei Systemen
eine Gleichgewichtsgrof3e, ndmlich die Temperatur. Sind A und B im Gleichgewicht, B
und C im Gleichgewicht = A und C sind im Gleichgewicht (also die Relation ’Systeme
sind im Gleichgewicht’ ist transitiv ;-))

lll.2. Boltzmann-Verteilung

Geg.: groB3es thermodynamisches System mit bestimmten Makro-Randbedingungen
(in bestimmtem Makrozustand).
Alle zugehorigen Mikrozustdnde nehmen ein bestimmtes Phasenraumvolumen Q

ein (— Anzahl der moglichen Mikrozustidnde fiur diesen Makrozustand).
SW)

aus Entropie S =k-InQ folgt: Qy =e¢ %
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betrachten kleines Teilsystem mit Energie ¢; mit &, =0
Aufteilung: kleines System + grofles Restsystem, kleines System gibt Energie ab
totale Energie: U = g + (U —¢j)

~~ —

kleines Teilsystem:j grofler Rest
betrachte alle moglichen Aufteilungen des Phasenraumvolumens: Q =Y, Q;

fiir gro3es Restsystem: Entropie
ds
dUu
~~
T-1

S(U—¢;) = S(U) gi+... Y

fiir ein bestimmtes Phasenraumvolumen Q; folgt:

sy &
= .Qj:e kK .e kT

Phasenraumvolumen ~ Wahrscheinlichkeit der Mikrozustiande
dann gilt Gleichverteilung der Wahrscheinlichkeiten der Mikrozustiande

& Q- S(U—¢;) € & .
wie) _ L e 7 SO =| e wr = w(e)) Boltzmann-Verteilung
w(g) Qo w(&)

) 1 w(€j) _Be
tB=— i
mit 8 T = (&) e

l11.3. Kanonischer Zustand

gehen aus von Systemen, bei denen die Boltzmann-Verteilung gilt (isoliert, kleiner
Energieaustausch)
wollen Summe der Wahrscheinlichkeiten auf 1 normieren, dazu ist es giinstig, die
Zustandssumme einzufiihren
7= Zeiﬁ &i
J

= Einzelwahrscheinlichkeit:
I e
w(gj) = Z¢

Ein Zustand mit dieser Verteilung wird kanonischer Zustand genannt.

Bemerkung: Das ist der Zustand eines kleinen Teilsystems (Totalsystem ist in einem
anderen, mikrokanonischen Zustand).

Zustandssumme ist wichtig fiir Berechnungen des Systems, z.B. innere Energie: lo-
garithmische Ableitung von Z:

—%mz = %Zeje‘ﬁgf = ZSjW(Sj) =(e)=U

III. Thermodynamische ZustandsgroBen und Verteilungen
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IV. Zusammenfassung der Statistik

IV.1. Thermodynamische Gesamtheiten

1. Vollkommen abgeschlossenes System: Gleichgewicht bei fester Energie U und
bei fester Teilchenzahl N, so ein Zustand wird mikrokanonische Gesamtheit ge-
nannt (eigentlich Idealisierung, in Realitét nicht vorhanden)

2. Austausch von Energie moglich: Gleichgewicht bei mittlerer Energie (¢), Teil-
chenzahl konstant, so ein Zustand wird kanonische Gesamtheit genannt (héu-
figster Fall)

3. System mit durchldassiger Membran, Austausch von Energie und Teilchen mog-
lich: Gleichgewicht bei mittlerer Teilchenzahl (N), dieser Zustand wird grofka-
nonische Gesamtheit genannt

IV.2. Thermodynamische Hauptsatze

0. Hauptsatz: Es gibt eine thermodynamsiche Zustandsgrof3e, ndmlich die Tempera-
tur T, 2 Systeme sind im Gleichgewicht, wenn ihre Temperaturen gleich sind (74 = Tp).

1. Hauptsatz: Es gibt eine ZustandsgroBe, genannt innere Energie U, die Anderung
dieser Energie ist die zu- oder abgefiihrte Warme plus der am System geleisteten
Arbeit (dU = 6Q + oW).

2. Hauptsatz: Es gibt eine Thermodynamische Zustandsgriof3e, die Entropie S, die im
Mittel immer ansteigt (sofern keine Energie zugefiihrt wird). Fiir reversible Prozesse

gilt dS = ‘STQ, % > 0 (Warme vom warmeren zum kéalteren).

3. Hauptsatz: Die Entropie S ist null beim absoluten Nullpunkt 7 = 0, dieser kann
nicht mit endlich vielen Schritten erreicht werden.
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