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Vorwort

An alle Leserinnen und Leser: Ihr könnt dieses Skriptum gerne (kostenlos) Kolle-
ginnen und Kollegen zur Verfügung stellen.
E-Mail: csteiner@grg21.ac.at
Ich möchte noch einmal betonen, dass dieses Skriptum keine Anspruch auf Vollstän-
digkeit oder Richtigkeit erhebt, ich habe es nach meinem Wissen erstellt und gemein-
sam mit Prof. Bertlmann korrigiert. Es entspricht an einigen Stellen nicht exakt der
Tafelmitschrift aus der Vorlesung.

Die Bilder stammen teilweise aus dem T2-Skriptum von Prof. Bertlmann1, dort
sind zu einigen Bildern auch externe Quellenangaben zu finden. Einige weitere Bilder
habe ich selbst erstellt. Alle anderen Bilder sind Eigentum ihrer Besitzer.
Anmerkung zur Version 3.0: Diese Version ist die letzte, Prof. Bertlmann hat sie
auf Fehler durchgelesen und korrigiert. Sollten nicht noch ernstzunehmende Fehler
auftauchen, betrachte ich das Skriptum als abgeschlossen. Zu dem Skriptum gibt es
drei Anhänge zu den beiden Vorträgen über EPR und Relativitätstheorie.

1Bertlmann, Reinhold A.; Friis, Nicolai - Theoretical Physics T2 Quantum Mechanics. Course of Lectures by Rein-
hold A. Bertlmann. T2-Script of Sommersemester 2008.
https://www.univie.ac.at/physikwiki/index.php/Datei:T2_Skript_final.pdf , 02.02.2012

Vorwort
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Teil I.

Quantenmechanik
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I. Welle Teilchen Dualität

I.1. Planck’sches Strahlungsgesetz, Hohlraum Strahlung

4.10.2011

Historisch gesehen beginnt die Quantenmechanik 1900.

Planck’s Entdeckung:

Die Energie ist der Frequenz proportional!

E = h̄ ·ω (I.1)

1

Hohlraum Strahlung:

Abbildung I.1.: Hohlraumstrahlung

Die Energiedichte der austretetnden Strahlung
wird in Abhängigkeit der Kreisfrequenz gemes-
sen, schon vor Planck wurden zwei Gesetzmäßig-
keiten entdeckt.

für kleine Frequenzen: von Reighley und Jeans

u(ω) =
kT

π2c3 ·ω
2 (I.2)

2

Diese Beschreibung gilt nur für kleine Frequen-
zen, bei ω → ∞ kommt es zur sogenannten ’UV-
Katastrophe’.

1ω = 2πγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kreisfrequenz (oft Frequenz genannt)
γ = 1

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequenz
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schwingungsdauer
c = λγ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lichtgeschwindigkeit
λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wellenlänge
h̄ = h

2π
= 1,054 ·10−27 ergs≈ 10−34 Js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Planck’sches Wirkungsquantum

h = 6,626 ·10−27 ergs
1 erg = 0,1µJ = 0,1 ·10−6 kgm2s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Einheit für die Energie

2T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperatur des Hohlraums
k = 1,38 ·10−16 ergK−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boltzmann-Konstante
1
2 · kT = E . . . . . . . . . . . . . . . . . . . . . . . . . Äquipartitionstheorem, thermodynamische Energie für jeden Freiheitsgrad
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für große Frequenzen: empirisches Gesetz von Wien:

u(ω)→ A ·ω3e−B ω

T (I.3)

3

Planck untersuchte den Bereich in der Mitte.

Interpolation von Planck:
u(ω)

ω→∞
= ω3

e
ω
T −1

(−1 im Nenner stört bei großen ω nicht)

u(ω)
ω→0
= ω3

e..ω

T ≈1+..ω

T −1 = kT
π2c3 ·ω2

⇒ Planck-Gesetz:

u(ω) =
h̄

π2c3 ·
ω3

e
h̄ω

kT −1
(I.4)

kT hat die Einheit einer Energie (ist die klassische Energie eines idealen Gases)
⇒ E = h̄ω

5.10.2011

3A,B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . empirisch bestimmte Konstanten

I. Welle Teilchen Dualität
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Einschub: Nobelpreise Physik 2011:

S. Perlmutter, USA; B. P. Schmidt, Australien; A. Riess, USA für ’accelerated expansi-
on of our universe by observation’ - haben ca. 50 weit entfernte Supanovas beobachtet
und damit die beschleunigte Ausdehnung des Universums untersucht und gezeigt.

Big Bang⇒ Hintergrundstrahlung ≈ 3K
Einstein: Allgemeine Relativitätstheorie (ART): Gleichungen zwischen Geometrie

und Materie (Geometry↔Matter, Krümmungstensor Tµν ↔Masse M)
Hier fehlt der Rest des Einschubs zum Nobelpreis, den ich auch nicht

mehr einfügen werde.

Folgen der Strahlungsformel:

1. λmax ·T = const.= 0,29 cmK . . . Wien’sches Verschiebungsgesetz

2. Strahlungsleistung:

∫
∞

0
u(ω)dω =

h̄
π2c2

(
k
h̄

)4

T 3 ·T
∫

∞

0

( h̄ω

kT

)3

e
h̄ω

kT −1
d
(

h̄ω

kT

)
︸ ︷︷ ︸

=:x

=
k4

π2c3h̄3

∫
∞

0

x3dx
ex−1︸ ︷︷ ︸

nachschlagen: π4
15

·T 4

⇒
∫

∞

0
u(ω)dω =

k4π2

15c3h̄3 ·T
4 - Stefan-Boltzmann-Gesetz (I.5)

3. u(ω)
ω→0→ ω2 - Gesetz von Reighley-Jeans

4. u(ω)
ω→∞→ ω2e−B ω

T - Gesetz von Wien

I.2. Photoelektrischer Effekt

Abbildung I.2.: Photoelektrischer Effekt

H. Hertz entdeckte 1887 folgendes Phänomen:
Metalloberfläche sendet e− aus, wenn mit
UV-Licht bestrahlt!

1. kinetische Energie der e− ist unabhän-
gig von der Intensität des Lichts

2. kinetische Energie der e− nimmt mit
der Frequenz des Lichtes zu

3. ∃ Grenzfrequenz, unterhalb der keine
e− mehr ausgesandt werden

I. Welle Teilchen Dualität
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1905 Photonenhypothese von Einstein:

Licht besteht aus Energiequanten, genannt
Photonen! (Nobelpreis 1921)
(Name ’Photonen’ nicht von Einstein, sondern von unbekanntem Chemiker verwen-
det - von allen übernommen)

E = h̄ ·ω (I.6)

Photoelektrische Formel:

Ekin =
mv2

2
= h̄ ·ω−W (I.7)

4

Ekin(Energie des e−)< h̄ω(Energie des Photons)

aus der photoelektrischen Formel folgen dann 1., 2. und 3. von oben

zu 3. - Grenzfrequenz: für Ekin→ 0 ergibt sich damit die Grenzfrequenz: ω0 =
W
h̄

6.10.2011

Experiment zum Photoelektrischen Effekt - Millikan (1916):

Theorie: eU0 = Ekin = h̄ω−W → 0⇒ ω0 =
W
h̄ (Grenzfrequenz)

experimentell: ⇒ ω0,W, h̄ aus Daten ablesbar (erste sehr genaue Bestimmung von h̄)
Austrittsarbeit W für gängige Metalle alle in Größenordnungen von 2− 5 eV (Ver-
gleich: Ionisierungsenergie in Wasserstoff-Atom ca. 13,6 eV)

4W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Austrittsarbeit (Materialkonstante)

I. Welle Teilchen Dualität
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Licht - Photonen Zusammenfassung:

1. E = h̄ω

2. c = 2,88 . . . ·1010 cm sec−1

3. Ausbreitungsrichtung durch Wellenzahlvektor~k gegeben: k = |~k|= 2π

λ

Abbildung I.3.: Wellenzahlvektor~k

erinnern an SRT ⇒ Aussage über Impuls und
Masse des Photons:
Energie: E =

√
~p2c2 +m2c4, Geschwindigkeit: ~v =

∂E
∂~p = ~pc2√

~p2c2+m2c4
, wenn v→ c ⇒ mPhoton = 0 ! damit

für die Energie des Photons:⇒ E = pc
QM + SRT: QM und SRT verbinden: h̄ω = E =

pc = pω

k weil c = ω

k , damit kann man ω auf bei-
den Seite weglassen und es ergibt sich: p = h̄k ,

~p = h̄~k

Teilchen - Welle: E = h̄ω, p = h̄k

I. Welle Teilchen Dualität
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I.3. Compton-Effekt

Compton, Experiment 1922, Nobelpreis 1927
Streuung von Photonen an ruhenden Elektronen

Streuprozess, es gilt Erhaltung von Energie und Impuls

Energieerhaltung: h̄ω +mc2 = h̄ω ′+ E︸︷︷︸√
~p2c2+m2c4

Impulserhaltung: h̄~k = h̄~k′+~p (h̄~k′ = |~k| · |~k′| · cosθ = |k| · |k′| · cosθ )

nach Auswertung: ∆λ = λ
′−λ = 4π

h̄
mc

sin2 θ

2
- Compton-Formel

Resultat: gestreutes Photon→ größere Wellenlänge wegen Energieabgabe an e−

Compton-Wellenlänge: λ c =
h̄

mc = 3,80 ·10−11 cm

Intensität von Photonen, Röntgenlicht mit Molybdän-Anoden:

I.4. Bohr’s These

11.10.2011

Quantisierung der Energiezustände von Atomen.
Fragen:

• Warum ergibt sich ein diskretes Linienspektrum?

• Warum fallen die Elektronen nicht in den Kern?

I. Welle Teilchen Dualität
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Abbildung I.4.: Intensität von Photonen Abbildung I.5.: Energieniveaus

Bohr’s Quantenpostulat (1913):

Nobelpreis 1922
Die Elektronen im Atom können nur diskrete Energiewerte einnehmen und beim
Übergang von einem Energiewert zum anderen wird ein Photon mit der Frequenz

ω =
1
h̄
(En−Em) ausgestrahlt oder absorbiert.

E0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .stabiler Grundzustand

Bohr’sches Atommodell (’Babymodell’ - aus historischen Gründen):

Die stationären Zustände sind jene, wo die klassische Bahn eine Quantisierungsbe-
dingung erfüllt.

Wirkungsintegral:∮
p dq = nh 5

Bohr: Atome auf Kreisbahnen (’wie die Planeten um die Sonne’), Sommerfeld er-
weitert das Modell (Ellipsenbahnen, . . .)

Bohr’s Modell konnte das Spektrum des H-Atoms ’erklären’: h̄ω = Ry︸︷︷︸
const.

(
1
n2︸︷︷︸

f ixiert

− 1
m2 )

n . . . Nummer der Spektrallinie-Serie, benannt nach den Entdeckern, z.B. n = 1
Lyman-Serie, n = 2 Balmer-Serie, n = 3 Paschen-Serie

5 p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impuls
q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weg
n = 1,2,3, . . . ∈ Z+

I. Welle Teilchen Dualität
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Ry
hc = R∞︸︷︷︸

Kern f ix

= 2π2 me4

h3c = 109737,3 cm−1

Bohr’s Atommodell ist FALSCH, es erklärt nicht das Energiespektrum mit~L = 0.

Komplementaritätsprinzip:

Bohr: Welle und Teilchen sind komplementär zueinander. Ein System zeigt entweder
Wellen- oder Teilcheneigenschaften (je nachdem, was man betrachtet - abhängig von
der Messapperatur).
Welle und Teilchen sind 2 Aspekte in der Beschreibung von physikalischen Phäno-
menen, die komplementär sind.
Welle und Teilchen sind nicht gleichzeitig messbar (ähnlich wie ’Ort und Impuls’ und
’Energie und Zeit’).

Bohr’sches Korrespondenzprinzip:

Geht man zu sehr hohen Anregungen (große Quantenzahlen n) über, so gehen die
Quantengesetze in die Klassischen über (’n→ ∞ entspricht h̄→ 0’).

Kopenhagener Interpretation der QM:

Gibt an, wie der mathematische Formalismus physikalisch zu interpretieren ist. Ver-
treter: Bohr, Heisenberg, Pauli, Born, . . .; Gegner: Einstein, Schrödinger

I.5. Welleneigenschaften der Materie

de Broglie Thesen:

1923, Nobelpreis 1929
Teilchen haben auch Welleneigenschaften

Teilchen E = h̄ω = hν Welle

p = kh̄ =
h
λ

Ordnet Materie Wellenlängen zu, ’Materiewellen’:

λdeBroglie =
h

mv
=

h√
2mEkin

→ Schrödinger ψ-Funktion→ Born Interpretation

λdeBroglie ≈ d︸︷︷︸
Abstand v.Kristallgitter

I. Welle Teilchen Dualität
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I.6. Beugung von Elektronen am Kristall

⇒ konstruktive Interferenz, sinϕ = λ

d ⇒ d sinϕ = n ·λ 6

Elektron mit bestimmter Energie auf Kristall geschickt, Experiment von Davison,
Germer, Thomson 1927 (Nobelpreis 1937).

I.7. Heisenberg’sche Unschärferelation

12.10.2011

Abbildung I.6.: Konstruktive Interferenz

Veranschaulichung mittels Heisenberg-
Mikroskop.

konstruktive Interferenz, ∆x ist
der kleinste Abstand für Auflösungs-
vermögen

sinϕ = λ

∆x ⇒ ∆x =
λ

sinϕ

Wenn λ klein wird (sinϕ = const.),
dann wird ∆x beliebig klein?

JA, aber Heisenberg⇒ geht nur auf Kosten der
Impulsinformation!

Warum - Erklärung mit Heisenberg-Mikroskop:

Am Schirm wird das gestreute Photon registriert. Richtung des gestreuten Photons
ist unbestimmt innerhalb einer Öffnung mit dem Winkel ϕ. Daher ist der Rücksto-

6n = 1,2,3, . . . ∈ Z+; λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . de Brogile-Wellenlänge

I. Welle Teilchen Dualität
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ßimpuls des Elektrons unbestimmt (’unscharf’), das heißt die Impulswerte liegen in-
nerhalb von einem Intervall ∆p.

Abbildung I.7.: Heisenberg-Mikroskop

∆pe−
x ≈∆pPhoton

x = pPhoton︸ ︷︷ ︸
=h̄k= h

λ

·sinϕ =
h
λ
· sinϕ = ∆pe−

x

⇒ ∆x ·∆p≈ h (I.8)

Unschärferelation zwischen Ort und Impuls
von Heisenberg (1927, Nobelpreis: 1932)
Im quantenmechanischen Formalismus: Zu-
stand des Elektrons → Wellenfunktion; Orts-
, Impulsmessung → Operator (zwischen ih-
nen wird Erwartungswert ausgerechnet); U.R.:

∆x ·∆p≥ h̄
2

, ’=’ bei Gauß-Wellenfunktion (für

harmonischen Oszillator)

Satz: Wann immer es genaue Ortsmessungen
gibt, ist die Information über den Impuls ’un-
scharf ’ (ungenau) und umgekehrt!

Das gilt prinzipiell (keine Ungenauigkeit von
Messinstrumenten)!

Komplementarität: Ort x und Impuls p sind
komplementär (im Sinne von Bohr), beides x
und p ist nicht beliebig genau messbar (gleich-
zeitig).

Energie-Zeit Unschärferelation:

Es gibt Unschärfe zwischen Dauer ∆t eines physikalischen Vorgangs und der Genau-
igkeit der Energiemessung ∆E.

Abbildung I.8.: Energie-Zeit-Unschärfe

Teilchen wird Wellenpaket zugeordnet, ∆t . . .
wie lange das Wellenpaket braucht, um an ei-
nem bestimmten Ort vorbeizukommen. Man
betrachtet nun ein freies Teilchen - frei bewe-
gendes Wellenpaket:

Energie: Ekin = p2

2m ⇒ Variation ∆E =
p
m
·∆p

(kleine Änderung entspricht in etwa Differen-
tial einer Funktion - d f (p) = d

d p f (p) ·d p)
Geschwindigkeit: v = ∆x

∆t ⇒ zeitliche Variation

I. Welle Teilchen Dualität
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∆t =
∆x
v

=
m
p

∆x

Orts-Impuls-Unschärfe war ∆x ·∆p≥ h̄
2 ⇒

m
p
·∆x︸ ︷︷ ︸
∆t

· p
m

∆p︸ ︷︷ ︸
∆E

≥ h̄
2 ⇒

∆E ·∆t ≥ h̄
2

(I.9)

Unschärferelation in Energie und Zeit
Es gibt Komplementarität zwischen Energie und Zeit.

Physikalische Konsequenz: Es gibt eine natürliche Linienbreite von Spektrallinien
(eine mathematische Linie würde man gar nicht sehen). Diese Breite ist ∆E = h̄∆ω.
Entspricht der endlichen Emissionszeit des Wellenpaketes, diese bewirkt eine Ener-
gieunschärfe.

I.8. Doppelspalt-Experiment

13.10.2011

Klassischer Fall (Kügelchen, etc.)

Abbildung I.9.: Ein Spalt geöffnet Abbildung I.10.: Beide Spalte geöffnet

Teilchen werden durch 2 Spalte geschickt (klassischer Fall).
Wenn nur Spalt 1 offen:⇒ Verteilung W1
Wenn nur Spalt 2 offen:⇒ Verteilung W2
Wenn beide Spalte offen:⇒ Verteilung W12 =W1 +W2
experimentell: Anzahl der ’Klicks’, theorerisch: Wahrscheinlichkeit (W12 ist Summe
der Wahrscheinlichkeiten)

I. Welle Teilchen Dualität
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Quantenmechanischer Fall

Versuch wird zum Beispiel mit Elektronen und einer Photoplatte als Detektor, die
beim Auftreffen gefärbt wird, durchgeführt. Die Intensität zeigt eine Kurve, die fun-
damental verschieden zur Summe der Wahrscheinlichkeiten der Einzelspalte (die wie
im klassischen Fall aussehen) ist.

ebene Welle wird beim Spalt zu Kugelwelle, es kommt in der Mitte zur größten
kostruktiven Interferenz zwischen den beiden Kugelwellen

Elektronen werden durch 2 Spalte geschickt (quantenmechanischer Fall).
Die Elektronen werden hinter dem Doppelspalt mittels Zählrohr registriert.
Wenn nur Spalt 1 offen:⇒ Verteilung W1 (wie oben!)
Wenn nur Spalt 2 offen:⇒ Verteilung W2 (wie oben!)
Wenn beide Spalte offen:⇒ Verteilung W12 6=W1 +W2
experimentell: Intensität, theoretisch: Wahrscheinlichkeit
Man erhält ein Interferenzbild einer Welle am Doppelspalt. Die Intensität ist dort
hoch, wo die Wegdifferenz ∆L = L2−L1 der beiden Wege, die die Elektronen nehmen
können (durch Spalt 1 oder durch Spalt 2) - auch Gangunterschied genannt - ein
Vielfaches der de Broglie Wellenlänge ist: ∆L = n ·λdeBroglie.

Interpretation von Born (1926/27):

Nobelpreis 1954
Das Verhalten der Elektronen durch den Doppelspalt wird durch eine Welle (kom-
plexwertige Funktion) beschrieben: Ψ(x, t).
Die Wahrscheinlichkeit W des Auftreffens des Elektrons (bzw. die Intensität I) wird
durch den Betrag des Amplitudenquadrats angegeben:

Theorie |Ψ(x, t)|2 = I Experiment

I. Welle Teilchen Dualität
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Elektron als Welle:

Spalt 1 offen: W1 = |Ψ1|2
Spalt 2 offen: W2 = |Ψ2|2
beide Spalte offen: Welle Ψ = Ψ1 +Ψ2 (Amplituden),
W12 = |Ψ|2 = |Ψ1 +Ψ2|2 = |Ψ1|2︸ ︷︷ ︸

>0

+ |Ψ2|2︸ ︷︷ ︸
>0

+ 2ReΨ
∗
1Ψ2︸ ︷︷ ︸

Inter f erenzterm

7

Interferenzterm > 0: kostruktive Interferenz, = 0: klassischer Fall, < 0: destruktive
Interferenz

Resultat:

Wenn ein Elektron durch einen Doppelspalt geht, dann trifft es wie ein Teilchen am
Schirm auf (’Klick’, lokalisiert). Aber die Anzahl der ’Klicks’, Intensität, ist durch eine
Welle bestimmt: |Ψ(x, t)|2. In diesem Sinn: Elektron ist Teilchen oder Welle.

Bemerkungen:

1. Die wahrscheinlichkeitsverteilung gilt für jedes einzelne Elektron. Ψ beschreibt
ein Elektron. Ein einzelnes Elektron folgt auch schon dem Beugungsmuster,
man kann nicht voraussagen, wohin es fliegt, man kann nur sagen, dass es
nicht auf ein Minimum der Interferenzkurve treffen wird. Die Elektronen wer-
den gleich präpariert (ihnen wird auch die gleiche Welle zugeordnet), aber sind
nicht die selben.

2. Die Weginformation zerstört das Wellenverhalten. Wenn man bestimmt, durch
welchen Spalt die Elektronen gehen, so ergibt sich wieder die klassische Ver-
teilung (nicht mehr die Interferenz). Je mehr Information darüber bekannt ist,
durch welchen Spalt das Elektron geht, desto mehr verschwindet das Interfe-
renzmuster (kontinuierlich).

3. Das Elektron teilt sich nicht am Doppelspalt! Es gibt nur 1 ganzes Elektron!
Theorie dafür: Schrödinger.

Experiment Doppelspalt mit C60-Molekülen (Fullerene, 60C-Moleküle):

18.10.2011

Abbildung I.11.: Fulleren

M. Arndt,. . . , A. Zeilinger - 1999
Fullerene: C60 - 60 Kohlenstoff-Atome (C12) zu Molekül-
Struktur
Durchmesser: D = 1 nm = 10−9 m (Durchmesser der äußersten
Elektronenhülle)
Massenzahl: Daltonzahl: 60 ·12 = 720 u
in Ofen erhitzt (≈ 900 K) → schießen aus Ofen mit vmax =
220 ms−1

7Ψ∗1Ψ2 +Ψ∗2Ψ1 = Ψ∗1Ψ2 +(Ψ∗1Ψ2)
∗ = 2ReΨ∗1Ψ2, da allgemein z+ z∗ = 2Re z

I. Welle Teilchen Dualität
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deBroglie Wellenlänge: λdeBroglie =
h

mv = 2,5 pm = 2,5 ·10−12 m - Maß für Interferenzfä-
higkeit eines Objekts, Verhältnis λ

D = 1
400

Doppelspalt: SiN-Struktur, d = 50 nm breit, 100 nm Periode

Abbildung I.12.: Verteilung der Fulle-
rene mit und ohne
Gitter

Beugungswinkel: θ =
λdeBroglie

d = 5 Bogen
⇒ gute Kollimation (Einengung des Strahls) nö-
tig
⇒ geringe Intensität wichtig (wichtig für einzel-
ne Ereignisse, Effekt ist nicht reiner ’Massenef-
fekt’)
Kohärenzlänge Lc = 4,2 pm= 4,2·10−12 m Dedektion:
Laser schleudert ein Elektron aus dem Fulleren
heraus, wenn Fulleren durch Laser geht, dadurch
wird das Fulleren geladen und kann dedektiert
werden keine Weginformation!
Fullerene heiß→ Strahlung, Photon Wellenlänge
λPhoton ≈ 5−20µm >> d = 50 nm
⇒6 ∃Weginfo→ Interferenz möglich
Resultat: Interferenzbild

I. Welle Teilchen Dualität
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II. Zeitabhängige Schrödinger-Gleichung

II.1. Schrödinger-Gleichung - Wellenfunktion

Energie E = h̄ ·ω Frequenz
Impuls p = h̄k Wellenzahl
suchen DGl., die Wellenverhalten hat und die Physik richtig wiedergibt
betrachten ebene Welle (ist Idealisierung, eigentlich Summe über alle möglichen Wel-
lenzahlen, mit ’Gewicht’ ψ̃(k) - Fourier-Integral, Fourier-Transformation)

Idealisierung eigentlich (Superposition)

ψ(x, t) = ei(kx−ωt)
ψP(x, t) =

∫
∞

−∞

dk√
2π

ψ̃(k)ei(kx−ωt)

ih̄
∂

∂ t
ψ(x, t) = h̄ω︸︷︷︸

E

ψ(x, t)
QT
= Eψ(x, t) →

∫
∞

−∞

dk√
2π

ψ̃(k) h̄ω︸︷︷︸
E

ei(kx−ωt)

−ih̄∇ψ(x, t) = h̄k︸︷︷︸
p

ψ(x, t)
QT
= pψ(x, t) →

∫
∞

−∞

dk√
2π

ψ̃(k) h̄k︸︷︷︸
p

ei(kx−ωt)

−h̄2
∆ψ(x, t) = (h̄k)2︸ ︷︷ ︸

p2

ψ(x, t)
QT
= p2

ψ(x, t) →
∫

∞

−∞

dk√
2π

ψ̃(k)(h̄k)2︸ ︷︷ ︸
p2

ei(kx−ωt)

nichtrelativistische Energie-Impuls-Beziehung;

E︸︷︷︸
Gesamtenergie

=
p2

2m︸︷︷︸
kin.Energie

+ V (x)︸︷︷︸
pot.Energie

mal ψ(x, t) - benütze Zusammenhang:

ih̄
∂

∂ t
ψ(x, t) =

[
− h̄2

2m
∆+V (x)

]
ψ(x, t)

Schrödinger-Gleichung, 1926 (Nobelpreis 1933)
Lösung ψ(x, t) Wellenfunkion∫
|ψ(x, t)|2dx . . . Aufenthaltswahrscheinlichkeit (Wahrscheinlichkeit, Teilchen im Be-

rech zwischen x und x+dx zu finden) - Wahrscheinlichkeitsinterpretation von M. Born
19.10.2011

Andere Schreibweise (3-dimensional - wir betrachten nur 1-dimensionalen Fall):

Hψ(~x, t) = ih̄
∂

∂ t
ψ(~x, t) zeitabhängig (II.1)

wobe der Hamilton-Operator H =− h̄2

2m∆+V (x) → E Energie
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mit Warhscheinlichkeitsinterpretation von M. Born:
∫
|ψ(~x, t)|2d3x . . . Wahrschein-

lichkeit das Teilche zur Zeit t zwischen~x und~x+d3x zu finden

Abbildung II.1.: Beispiel einer Wellenfunktion

z.B. Wellenfunktion:
bei A . . . wahrscheinlichster Wert
bei B . . . W=0, Teilchen dort nicht auf-
findbar

Normierung der Wellenfunktion:

∫
∞

−∞

dx|ψ(x, t)|2 = 1 (II.2)

⇒Wellenfkt hat Abfall im Unendlichen

Bemerkung:

Wegen der statistischen Interpretation der Wellenfunktion (M. Born) gibt es eine
prinzipielle Unbestimmtheit (bei einer einzigen Messung nicht möglich vorauszusa-
gen, welches Ereignis eintreten wird).

Resumé:

Die Schrödingergleichung ist eine Differentialgleichung. . .

1. . . . 1. Ordnung in der Zeit t, ψ(x, t) ist durch Anfangswert t = t0 gegeben (physi-
kalisch wünschenswert).

2. . . . linear in ψ - damit gilt das Superpositionsprinzip (auch wünschenswert), also
wenn z.B. ψ1,ψ2 Lösungen⇒ ψ = c1ψ1 + c2ψ2 auch Lösung.

3. . . ., die homogen ist,⇒ die Normierung gilt für alle t!

II.2. Quantenmechanische Korrespondenz

ebene Welle: ψ = ei(kx−ωt)

⇒ ih̄
∂

∂ t
ψ = h̄ωψ = Eψ

−ih̄
∂

∂x
ψ = h̄kψ = pψ

ordnen den physikalischen Größen Energie und Impuls Operatoren zu: Quantenmechan.
Korrespondenz

Energie E→ ih̄
∂

∂ t

II. Zeitabhängige Schrödinger-Gleichung
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Impuls p→−ih̄
∂

∂x

~p→−ih̄
∂

∂~x
=−ih̄~∇

Klassische Physik:

E︸︷︷︸
Gesamtenergie

=
p2

2m︸︷︷︸
kinetische E.

+ V (x)︸︷︷︸
potentielle E.

= H(x)︸︷︷︸
Hamilton-Funktion

Übergang zur Quantenmechanik:

ih̄
∂

∂x
ψ(x, t) = (− h̄2

2m
∆︸ ︷︷ ︸

=̂kin. E.

+ V (X)︸ ︷︷ ︸
=̂pot. E.

)ψ(x, t)

Ortsoperator: Xψ(x) = xψ(x)

Hamilton-Operator: H =− h̄2

2m
∆+V (x) , damit hat die Schrödinger-Gleichung die Form:

Hψ(x, t) = ih̄
∂

∂ t
ψ(x, t) (II.3)

II.3. Kontinuitätsgleichung

gehen von Schrödinger-Gleichung aus (ih̄ ∂

∂ t ψ = Hψ)
komplex konjugierte Gleichung (H∗ = H, weil wir annehmen dass H immer hermi-
tisch, ist): −ih̄ ∂

∂ t ψ∗ = Hψ∗

Wahrscheinlichkeitsdichte:
ρ(x, t) = |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t)
differenzieren nach t:
∂

∂ t ρ = ψ̇∗ψ +ψ∗ψ̇ = (−) 1
ih̄ [(Hψ∗)ψ−ψ∗Hψ] = h̄

2mi [(∆ψ∗)ψ−ψ∗∆ψ]
definieren Wahscheinlichkeitsstrom:

~j(~x, t) =
h̄

2mi
[ψ∗~∇ψ− (~∇ψ

∗)ψ]

⇒ ∂ρ(~x, t)
∂ t

+~∇ ·~j(~x, t) = 0 (II.4)

II. Zeitabhängige Schrödinger-Gleichung
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Kontinuitätsgleichung,⇒ Erhaltungssatz
∫

∞

−∞

d3x|ψ(~x, t)|2 = 1 ∀t ! (Folgt aus Kon-

tinuitätsgleichung durch Integrieren mithilfe des Gauss’schen Integralsatzes:
∫

V d3x~∇~j =∫
O=∂V d~f~j )

II.4. Observable

20.10.2011

2 Konzepte:

1. Zustand eines Systems
repräsentiert durch Wellenfunktion ψ(x, t)

2. Observablen
physikalische Größen, die wir messen: Ort, Impuls, Energie,. . .
repräsentiert durch Operatoren - hermitisch

QT verbindet beide Konzepte: Zustand↔ Observable⇒Messwert, Erwartungswert

Operatoren:

Lineare Operatoren A: Aψ1 = ϕ1 (ψ(x) ∈ L2 ⇒
∫

dxψ∗(x)ψ(x) < ∞) ⇒ A(c1ψ1 + c2ψ2) =
c1ϕ1 + c2φ2 c1,2 ∈ C
Beispiele: ~∇, ∆, ∂

∂ t , 1 ·ψ = ψ, 0 ·ψ = 0
es gilt 1 ·A = A ·1, aber: A ·B 6= B ·A, (A ·B) ·ψ 6= (B ·A) ·ψ

Definition Skalarprodukt von Wellenfunktionen: 〈ϕ|ψ〉︸ ︷︷ ︸
Dirac-Notation

:=
∫

dxϕ∗(x)ψ(x)

〈ϕ| . . . bra, duale vector |ψ〉 . . . ket, vector (alternative Notation: (ϕ|ψ) )

Eigenschaften des Skalarprodukts:

• 〈ϕ|ψ〉∗ = 〈ψ|ϕ〉

• 〈ϕ|c1ψ1 + c2ψ2〉= c1〈ϕ|ψ1〉+ c2〈ϕ|ψ2〉 . . . linear in ket

• 〈c1ϕ1 + c2ϕ2|ψ〉= c∗1〈ϕ1|ψ〉+ c∗2〈ϕ2|ψ〉 . . . antilinear in bra

• 〈ψ|ψ〉 ≥ 0

• 〈ψ|ψ〉= 0⇔ ψ = 0

Operator im Skalarprodukt:

• 〈ϕ|Aψ〉=
∫

dxϕ∗(x)Aψ(x)

II. Zeitabhängige Schrödinger-Gleichung
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Definition Adjungierter Operator: a† heißt zu A adnjungierter Operator, wenn

〈a†
ϕ|ψ〉= 〈ϕ|Aψ〉 , das heißt

∫
dx(a†ϕ)∗(x)ψ(x) =

∫
dxϕ∗(x)Aψ(x)

also a† = (AT )∗

dann gilt: (A ·B)+ = B+ ·a†!

Definition hermitisch, selbstadjungiert: Ein Operator A heißt
hermitisch, wenn a† = A, D(a†)⊃ D(A), und
selbstadjungiert, wenn a† = A, D(a†) = D(A)
⇒ Eigenwerte (⇒Messwerte) reell!

Beispiele:

1. Xψ(x) = xψ(x) . . . Ortsoperator

2. Pψ(x) =−ih̄ ∂

∂xψ(x) . . . Impulsoperator

3. Hψ(x) = (− h̄2

2m∆+V (x))ψ(x) . . . Hamilton-Operator (Energie)

II.5. Erwartungswerte von Observablen

Definition: Ein Zustand in der QM wird durch einen Vektor |ψ〉 im komplexwertigen
Vektorraum mit skalarem Produkt (Hilbertraum) beschrieben.

Definition: Eine Observable in der QM wird durch einen hermitischen Operator be-
schrieben.

Definition: Der Erwartungswert von Observablen A im Zustand |ψ〉:

〈A〉= 〈ψ|A|ψ〉
〈ψ|ψ〉

〈ψ|ψ〉= ||ψ||2 Norm (〈ψ|ψ〉=
∫

dx|ψ|2 = 1)
〈ψ|A|ψ〉= 〈ψ|Aψ〉=

∫
dxψ∗(x)Aψ(x) ist auch Mittelwert - physikalische Bedeutung!

Beispiele:

1. Erwartungswert der potentiellen Energie V (x)

〈V (X)〉= 〈ψ|V (X)|ψ〉= 〈ψ|V (x)|ψ〉=
∫

dxψ∗(x)V (x)ψ(x) =
∫

∞

−∞

dxV (x)|ψ(x)|2

klassische Formel für den Erwartungswert von V (x) - Summe über alle mögli-
chen V (x)-Werte, gewichtet mit der Wahrscheinlichkeit |ψ(x)|2

2. Erwartungswert des Impulses p

〈P〉= 〈ψ|P|ψ〉=
∫

∞

−∞
dxψ∗(x)(−ih̄ ∂

∂x)ψ(x) =
∫

∞

−∞

d p p|ψ̃(p)|2

II. Zeitabhängige Schrödinger-Gleichung
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(2. Schritt: erinnern an Fourier-Transformation: ψ(x) = 1√
2π h̄

∫
d pψ̃(p)e

i
h̄ px weil

Pψ̃(p) = pψ̃(p), h̄k = p, ψ̃(p) = 1√
2π h̄

∫
dxψ(x)e−

i
h̄ px )

|ψ̃(p)|2 . . . Wahrscheinlichkeitsdichte für Impuls, 〈P〉 entspricht der Mittelwert-
bildung in der Experimentalphysik

Unschärfe von Observablen

25.10.2011

Definition: folgender Operator: A = A−〈A〉

Mittelwert von A2
:

〈A2〉= 〈(A−〈A〉)2〉= 〈A2−2A〈A〉+ 〈A〉2〉= 〈A2〉−〈A〉2 =: (∆A)2

Schwankung, Unschärfe, Dispersion:

∆A =
√
〈A2〉−〈A〉2 (II.5)

es kann sein, dass 〈A〉= 0⇒ ∆A =
√
〈A2〉 6= 0

z.B. Ortsoperator X für gaußartige Wellenfunktion (ψ(x) = Ne−ax2)
〈X〉= 0, 〈X2〉 6= 0

Frage: Hat eine physikalische Observable einen scharfen Wert? Antwort: Ja.

Satz: Die Unschärfe ∆A einer Observablen A im Zustand |ψ〉 verschwindet, wenn |ψ〉
Eigenvektor von A ist.

Beweis: da |ψ〉 Eigenvektor von A ist gilt: A|ψ〉= a︸︷︷︸
Eigenwert

|ψ〉︸︷︷︸
Eigenvektor

a ∈ R

〈A2〉= 〈ψ|AA|ψ〉= 〈ψ|A|ψ〉2 = a2 〈A〉2 = 〈ψ|A|ψ〉2 = 〈ψ|a|ψ〉2 = (a〈ψ|ψ〉︸ ︷︷ ︸
=1

)2 = a2

⇒ ∆A =
√
〈A2〉−〈A〉2 =

√
a2−a2 = 0

II.6. Kommutator von Operatoren

A ·B|ψ〉︸︷︷︸
|ϕ〉

= A|ϕ〉= |χ〉

B ·A|ψ〉= B|η〉= |ξ 〉
im Speziellen: X,P

II. Zeitabhängige Schrödinger-Gleichung
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PXψ(x) =−ih̄ ∂

∂x · (xψ(x)) =−ih̄(ψ(x)+ x ∂

∂xψ(x) =−ih̄ψ(x)+XPψ(x)
|| (X ·P−P ·X)ψ(x) = ih̄ψ(x) || ∀ψ(x)
⇒ X ·P−P ·X= ih̄ - Operator-Relation

Definition: Kommutator:
[A,B] = A ·B−B ·A

⇒ Kommutator für X und P: [X,P] = ih̄

3 Dimensionen: [Xi,P j] = ih̄δi j

Eigenschaften des Kommutators:

1. [A,B] =−[B,A] - antisymmetrisch

2. [A,B] ist linear in A und B

3. [A,B]+ = [B+,a†] Kommutator von hermitischen Operatoren ist antihermitisch

4. [A,B ·C] = B[A,C]+ [A,B]C

5. [A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0 - Jacobi-Identität

6. eABe−A = B+[A,B]+ 1
2! [A, [A,B]]+ . . . - Baker-Hausdorff-Formel

II.7. Unschärfe-Relation

Die Unschärfe ist ein Maß für die Quantenmechanische Standardabweichung in den
Resultaten von wiederholten Messungen von identisch präparierten Systemen.

1. Unschärferelation zwischen Observablen:
Operator A = A−〈A〉 ⇒ 〈A2〉= 〈A2〉−〈A〉2 = (∆A)2

Theorem: Seien A und B zwei Observablen, dann gilt für jeden Zustand folgende
Ungleichung:

∆A ·∆B≥ 1
2
|〈[A,B]〉| (II.6)

Beweis: definieren Operator Z = A
∆A + i B

∆B (nicht hermitisch)
es gilt: 〈Zψ|Zψ〉= 〈ψ|Z+Z|ψ〉 ≥ 0 (Länge zum Quadrat)
⇒ 〈ψ|( A

∆A − i B
∆B) · (

A
∆A + i B

∆B)|ψ〉 ≥ 0

〈ψ| A2

(∆A)2︸ ︷︷ ︸
1

+ i
∆A·∆B(AB−BA)+

B2

(∆B)2︸ ︷︷ ︸
1

|ψ〉 ≥ 0

⇒ 2∆A∆B≥−i〈[A,B]〉 ⇒ ∆A∆B≥ 1
2 |〈[A,B]〉|

II. Zeitabhängige Schrödinger-Gleichung
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Satz: Wann immer der Kommutator von zwei Observablen A und B nicht ver-
schwindet, gibt es eine Unschärfe oder eine Unschärferelation zwischen den Ob-
servablen.
Observablen - komplementär

Bsp.: X,P⇒ [X,P] = ih̄⇒ ∆X ·∆P≥ h̄
2

Bemerkung: Heisenberg-Mikroskop ist eine andere logische Argumentation.

Bemerkung: Zustände ψ, für die die Unschärferelation minimal ist (∆X ·∆P= h̄
2 )

heißen Zustände minimaler Unschärfe, z.B. Gauss-Wellenpaket (harmonischer
Oszillator). ψ0(x) =

(mω

π h̄

) 1
4 e−

mω

2h̄ x2 〈X〉= 〈P〉= 0 〈X2〉,〈P2〉 6= 0

2. Energie-Zeit-Unschärferelation
27.10.2011

Physikalische Größen: X,P,H . . . Ort, Impuls, Energie
Die Zeit selbst ist keine dynamische Größe in der nichtrelativistischen QM. Ihr
wird kein Operator zugeordnet. Die Zeit ist unabhängige Variable, Parameter
der Theore. Die Zeit ist keine Observable.
∆t ist das Zeitintervall, in dem es eine substanzielle Änderung des Systems gibt.
Als Maß für die Änderung betrachten wir den Erwartungswert eines Systems→
zeitliche Ableitung (Änderung) vom EW einer Observablen.
d
dt 〈A〉=

d
dt 〈ψ|A|ψ〉= 〈

∂

∂ t
ψ|︸ ︷︷ ︸

〈Hψ| i
h̄

A|ψ〉+ 〈ψ| ∂

∂ t A|ψ〉+ 〈ψ|A| ∂

∂ t
ψ〉︸ ︷︷ ︸

− i
h̄ |Hψ〉

(Schrödinger-Gleichung)

⇒ (H wird hinter Bra bzw. vor Ket gezogen, erster und dritter Summand sind
Kommutator) Relation zwischen Erwartungswerten:

d
dt
〈A〉= i

h̄
〈ψ|[H,A]|ψ〉+ 〈ψ| ∂

∂ t
A|ψ〉 (II.7)

Resultat: zeitliche Änderung des Erwartungswertes wird durch Kommutator
mit dem Hamilton-Operator bestimmt.

Typischer Fall: ∂

∂ t A = 0 ⇒ d
dt
〈A〉= i

h̄
〈[H,A]〉

Wenn [H,A] = 0 (A kommutiert mit H)⇒ 〈A〉= const. , zugehörige Observable ist
Erhaltungsgröße.
erinnere Unschärferelation zwischen Operatoren: ∆A ·∆B≥ 1

2 |〈[A,B]〉|
sei jetzt B = H (hamilton-Operator)→ ∆H =

√
〈H2〉−〈H〉2 = ∆E

⇒ ∆E ·∆A≥ h̄
2
| d
dt
〈A〉|

II. Zeitabhängige Schrödinger-Gleichung
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Definition:

∆t :=
∆A
| d

dt 〈A〉|
⇒ ∆E ·∆t ≥ h̄

2
(II.8)

Energie-Zeit-Unschärferelation

Bedeutung von ∆t: ∆A = | d
dt 〈A〉|∆t ∆A

∆t = | d
dt 〈A〉|

∆t ist die Zeit, die verstreicht, wenn sich der Erwartungswert einer Observablen
um eine Standardabweichung ∆A ändert. ∆A =

√
〈A2〉−〈A〉2

Beispiel: Wenn sich die Observable schnell ändert (∆t klein) ⇒ ∆E Energieun-
schärfe groß und vice versa.
Wenn eine Observable stabil ist (EW ändert sich nicht - d

dt 〈A〉 = 0⇒ ∆t → ∞) -
System ist stationär⇒ ∆E = 0, keine Energieunschärfe.

II.8. Ehrenfest-Theorem

Die klassische Physik ist als Grenzfall in der QM enthalten, in folgendem Sinn:
gehen aus von Theorem: Relation zwischen EW: d

dt 〈A〉=
i
h̄〈[H,A]〉+ 〈∂A

∂ t 〉
benötigen: A =~x,~p H = ~p2

2m +V (x) (weil 〈∂A
∂ t 〉= 0 für A =~x,~p)

[H,xi] = [∑
j

p2
j

2m
,xi] =

1
2m ∑

j
(p j [p j,xi]︸ ︷︷ ︸

−ih̄δi j

+[p j,xi]p j) =
1

2m
(−ih̄pi− ih̄pi) = −ih̄

pi

m
= [H,xi]

[H, pi] = [V (~x),−ih̄
∂

∂xi
] = ih̄

∂

∂xi
V (~x) = [H, pi]

erinnern an klassische Kraft: ~K(~x) =−~∇V (~x)
für A =~x,~p gilt: d

dt 〈~x〉=
1
m〈~p〉 bzw. d

dt 〈~p〉=−〈~∇V (~x)〉= 〈~K(~x)〉
⇒ Ehrenfest-Theorem (1927) aus Kombination und Ableiten der beiden Gleichungen:

m
d2

dt2 〈~x〉= 〈~K(~x)〉 (II.9)

Die klassischen Bewegungsgleichungen sind für die Mittelwerte der Messoperatoren
erfüllt.
wir wollen haben: 〈~K(~x)〉= ~K(〈~x〉) - gilt im Allgemeinen nicht, gilt aber:

1. für freie Bewegungen

2. für den harmonischen Oszillator

3. approximativ für lokalisierte Wellenpakete

II. Zeitabhängige Schrödinger-Gleichung
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Virial-Satz: A = x · p (’so was wie eine Wirkung’)

[H,xp] = x [H, p]︸ ︷︷ ︸
ih̄ ∂

∂xV

+[H,x]︸ ︷︷ ︸
−ih̄ p

m

p =
h̄
i
(2T − x

∂

∂x
V )

( p2

2m = T . . .kinetische Energie)
mit Relation der EW:

d
dt
〈xp〉= i

h̄
〈[H,xp]〉= 〈2T − x

∂

∂x
V 〉 Wirkungsänderung im EW

im stationären Zustand: d
dt 〈xp〉= 0 ⇒ 2〈T 〉= 〈x ∂

∂x
V 〉 (das ist der Virialsatz der klas-

sischen Mechanik)
für den harmonischen Oszillator (V = mω2

2 x2) erhält man 〈T 〉 = 〈V 〉 (deswegen ist der
harmonische Oszillator ’so harmonisch’)

3.11.2011

Bemerkungen:

1. Generator für Raumtranslationen
Sei ψ(x) eine Wellenfunktion (das heißt jede Funktion die in Taylorreihe ent-
wickelbar ist),⇒ Lemma:

ψ(x+ x0) = e
i
h̄Px0ψ(x)

= (1+ i
h̄ P︸︷︷︸
−ih̄ ∂

∂x

x0+
1
2!(

i
h̄)

2P2x2
0 + . . .)ψ(x) = (1+−ih̄ ∂

∂xx0+
1
2!x

2
0

∂ 2

∂x2 + . . .)ψ(x) = ψ(x+x0)

2. Generator für Zeittranslation
ψ(x, t) . . . Lösung der Schrödinger-Gleichung (ih̄ ∂

∂ t ψ(x, t) = Hψ(x, t))⇒Lemma:

ψ(x, t + t0) = e−
i
h̄ Ht0ψ(x, t)

3. Zerfließen des Wellenpakets
Wellenpaket bewegt sich entlang x mit Geschwindigkeit v= x

t (Gruppengeschwin-
digkeit - entspricht Teilchengeschwindigkeit im Teilchenmodell).

II. Zeitabhängige Schrödinger-Gleichung
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wir wissen: Heisenberg-Unschärfe: ∃∆x Ortsunschärfe ⇒ ∃ auch ∆v Geschwin-
digkeitsunschärfe; für die Ortsunschärfe folgt dann: ∆x(t) = ∆x(0)+ t ·∆v - An-
stieg der Ortsunschärfe in der Zeit! Das heißt das Wellenpaket zerfließt (ver-
breitert sich) und der Peak sinkt wegen Normierung der Wellenfunktion (Fläche
muss gleich bleiben:

∫
∞

−∞
|ψ(x)|2dx = 1)

II. Zeitabhängige Schrödinger-Gleichung
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III. Mathematischer Formalismus der
Quantenmechanik

Nur praktisch (einige benötigte Dinge), nicht systematisch.

III.1. Hilbertraum

Alle Objekte der QM sind Elemente vom Hilbertraum (HR). HR ist ein Vektorraum in
C, mit einem Skalarprodukt. HR kan endlichdimensional oder unendlichdimensional
sein.

1. im endlichdimensionalen Fall gilt für das Skalarpordukt
x · y ∈ C x,y ∈ HR x = ∑i xi ei︸︷︷︸

Basis

x · y = (y · x)∗ x · y = ∑
i

x∗i yi

Norm: ||x||=
√

x · x =
√

∑i |xi|2
Operator: Ax = y yi = Aikxk
Operator, der Vektor aus HR in anderen Vektor aus HR überführt.

2. im unendlichdimensionalen Fall wird der Vektorraum zum Funktionenraum,
Vektoren werden C-wertige Funktionen, Skalarprodukt wird zum Integral über
diese Funktionen, xi→ ψx = ψ(x).
Wichtig für QM:

〈ϕ︸︷︷︸
dualer V

| ψ〉︸︷︷︸
Vektor

=
∫

dxϕ
∗(x)ψ(x)

Eigenschaft:
〈ϕ|ψ〉= 〈ψ|ϕ∗〉

Norm:

||ψ||=
√
〈ψ|ψ〉=

√∫
dx|ψ(x)|2 < ∞

Raum der quadratisch integrierbaren Funktionen: L2.
Operator:

A|ψ〉= |ϕ〉 |φ〉 ∈ HR

Satz: HR ist vollständiger Funktionenraum mit Skalarprodukt. (Ein Vektor im HR
ist also in jede Basis VONS (vollständig orthonormiertes System) entwickelbar!)
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Beispiel: Ebene Wellen 1√
2π

eikx VONS
|ek〉= 1√

2π
eikx

〈ek′|ek〉= δ (k′− k) Dirac-Funktion

→ 1
2π

∫
dk ei(k−k′)x = δ (k′− k)

Wellenfunktion ist Vektor im HR, d.h. entwickelbar in ebene Wellen (diese bilden
VONS).

ψ(x) =
1√
2π

∫
dk ψ̃(k)eikx

III.2. Dirac-Notation

Vektor im HR: |ψ〉 . . . ket, adjungierter Vektor: 〈ψ| . . . bra
Skalarprodukt: 〈ϕ|ψ〉=

∫
dxϕ∗(x)ψ(x) ∈ C . . . bracket

Operator wirkt auf ket: A|ψ〉= |Ψ〉 ∈ HR
〈Ψ|= 〈ψ|a† auf bra
zwei Operatoren: (hier anderes Ψ als vorher) AB|ψ〉= |Ψ〉 ⇒ 〈Ψ|= 〈ψ|B+a†︸ ︷︷ ︸

(AB)+

betrachten folgenden Zustand: AB|ψ〉〈ϕ|C|φ〉︸ ︷︷ ︸
∈C

∈ HR Man kann auch |ψ〉〈ϕ| als Opera-

tor D ansehen. Adjungiert: 〈φ |C+ |ϕ〉〈ψ|︸ ︷︷ ︸
D+

B+a†.

Das heißt die Multiplikation |ket〉× 〈bra| (äußere Multiplikation) ergibt einen Opera-
tor: |ψ〉〈ϕ|= D, der adjungierte Operator ist dann: D+ = |ϕ〉〈ψ|.
Es gilt: |ψ〉〈ϕ|+ = |ϕ〉〈ψ| (Multiplikation eines Spaltenvektors mit einem adjungierten
Vektor (→ Spaltenvektor) gibt eine Matrix).
Achtung: 〈ψ|ϕ〉 ∈ C, aber |ψ〉〈ϕ| ∈ HR ist ein Operator, z.B. |ψ〉〈ψ| heißt Dichtematrix
von oder Projektionsoperator auf Zustand Psi.

9.11.2011

III.3. Projektionsoperatoren und Entwicklung von Zuständen im
VONS

Wir untersuchen als nächstes die Entwicklung des Zustands |ψ〉 im VONS {|ψn〉}:

|ψ〉= ∑
n

cn|ψn〉

wobei Entwicklungskoeffizient cn . . . Wahrscheinlichkeitsamplitude für Wahrschein-
lichkeit, mit der Zustand |ψn〉 im Zustand |ψ〉 vorkommt

cn = 〈ψn|ψ〉

III. Mathematischer Formalismus der Quantenmechanik
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〈ψm|ψ〉= ∑n cn 〈ψm|ψn〉︸ ︷︷ ︸
=δmn

= cm


physikalisch: Übergangsamplitude vom Zustand ψ auf Zustand ψn, Wahrscheinlich-
keitsamplitude
dann schreibbar als:

|ψ〉= ∑
n
|ψn〉〈ψn︸ ︷︷ ︸

Operator Pn

|ψ〉

dann ist Pn ein Projektionsoperator:

Pn := |ψn〉〈ψn|

(projektive Messung von Neumann)
da Operator Pn aus dem Zustand |ψ〉 den Anteil |ψn〉 herausprojeziert

Pn|ψ〉= |ψn〉〈ψn|ψ〉︸ ︷︷ ︸
cn

= cn|ψn〉

|cn|2 = |〈ψn|ψ〉|2 . . . Wahrscheinlichkeit, mit der Zustand |ψn〉 im Zustand |ψ〉 gefunden
werden kann
es gilt:

P2
n = |ψn〉〈ψn|ψn〉︸ ︷︷ ︸

=1

〈ψn|= |ψn〉〈ψn|= Pn

allgemein gilt: jeder Operator definiert durch P2 = P heißt Projektionsoperator
klarerweise gilt: P† = P

Projektionsoperatoren sind orthogonal

Pm ·Pn = 0 für m 6= n

Pm ·Pn = |ψm〉 〈ψm|ψn〉︸ ︷︷ ︸
=0 für m 6=n

〈ψn|= 0 (〈ψm|ψn〉= δmn)

∃ Orthogonalrelation, es gilt:

Satz: Die Summe aller Projektionsoperatoren ist vollständig

∞

∑
n=1

Pn =
∞

∑
n=1
|ψn〉〈ψn|= 1 . . . Vollständigkeitsrelation

Der Satz folgt aus folgender Gleichung: |ψ〉= ∑n |ψn〉〈ψn|︸ ︷︷ ︸
⇒=1

|ψ〉

|ψn〉 ist der Zustand, der durch die Quantenzahl n charakterisiert wird

III. Mathematischer Formalismus der Quantenmechanik
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|ψn〉 → |n〉 verkürzte Schreibweise

Vollständigkeitsrelation für Zustand {|n〉}:

∞

∑
n=1
|n〉〈n|= 1

Beispiel Kugelflächen: |Ylm〉 → |lm〉
⇒ Vollständigkeitsrelation für Kugelflächen:

∞

∑
l=0

l

∑
m=−l

|lm〉〈lm|= 1

III. Mathematischer Formalismus der Quantenmechanik
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IV. Zeitunabhängige Schrödingergleichung

IV.1. Herleitung

ih̄
∂

∂ t
ψ(x, t) = Hψ(x, t)

beim Übergang X → x gilt auch (da außerdem mv2

2 = p2

2m ):

p→−ih̄
d
dx

p2→−h̄2 d2

dx2 bzw. p2→−h̄2
∆

also: H =
p2

2m
+V (x, t)→ −h̄2

2m
∆+V (x, t)

Annahme V (x, t)≡V (x) . . . Potential zeitunabhängig oder allgemein H zeitunabhän-
gig

Seperationsansatz: ψ(x, t) = ψ(x) f (t)

setzen in Schrödingergleichung ein:

⇒ ih̄
∂

∂ t
ψ(x) f (t) = Hψ(x) f (t) =− h̄2

2m
∂ 2ψ(x)

∂x2 f (t)+V (x)ψ(x) f (t)

⇒ einerseits: ih̄ψ(x)
∂

∂ t
f (t) =− h̄2

2m
f (t)

∂ 2ψ(x)
∂x2 +V (x)ψ(x) f (t)

· 1
ψ(x) f (t)⇒ andererseits: ih̄

∂ f (t)
∂ t

f (t)︸ ︷︷ ︸
nur von t abhängig

=− h̄2

2m

∂ 2ψ(x)
∂x2

ψ(x)
+V (x)︸ ︷︷ ︸

nur von x abhängig

und da man hier statt ∂ auch d verwenden kann und außerdem aus F(t) = F(x)⇒ F =
const. folgt, gilt:

ih̄
d f (t)

dt
f (t)

=− h̄2

2m

d2ψ(x)
dx2

ψ(x)
+V (x) = const.= E

Aus einer Gleichung (Schrödingergleichung) haben wir als 2 Gleichungen erhalten:

aus ih̄ . . .=E ⇒ ih̄
d f (t)

dt
= f (t)E ⇒ d f

f
=− i

h̄
Edt

∫
⇒ ln f =− i

h̄
Et+const ⇒ f (t) = e−i Et

h̄ ·const

aus − h̄2

2m
. . .=E ⇒− h̄2

2m
d2ψ(x)

dx2 +V (x)ψ(x)=Eψ(x) ⇒
(
− h̄2

2m
d2

dx2 +V (x)
)

ψ(x) = Eψ(x)
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Theorem: Zeitunabhängige Schrödingergleichung:

Hψ(x) = Eψ(x) mit H =
p2

2m
+V (x)

Definition: Ein Zustand wird ’stationär’ genannt, falls seine Wellenfunktion durch
ψ(x) = e−i Et

h̄ dargestellt werden kann. Für solche Zustände ist die Wahrscheinlich-
keitsdichte |ψ(x, t)|2 = ψ∗(x, t)ψ(x, t) = ψ∗(x)ψ(x)e+

i
h̄ Ete−

i
h̄ Et︸ ︷︷ ︸

=1

= |ψ(x)|2 auch unabhängig

von der Zeit.
Die Erwartungswerte von Observablen A(X ,P) sind auch zeitunabhängig.

〈A(X ,P)〉=
∫

dxψ
∗(x)e

i
h̄ EtA(x,−ih̄

∂

∂x
)ψ(x)e−

i
h̄ Et =

∫
dxψ

∗(x)A(x,−ih̄
∂

∂x
)

Bemerkung 1: 〈H(X ,P)〉 =
∫

dxψ∗(x)Hψ(x) = E
∫

dxψ
∗(x)ψ(x)︸ ︷︷ ︸
<∞

= 1 (wenn normiert) ⇒

Energieniveaus eines stationären physikalischen Systems sind zeitunabhängig!

Bemerkung 2: Falls die Wellenfunktionen normiert sind, sind die möglichen Werte einer
Konstante E die Energien des Systems.→ verschiedene Energieniveaus (E0 = Grund-
zustand, E1 = nächster usw.) - falls normiert⇒ E ∈ R

Lemma - Eigenschaft: Die Lösungen ψ(x) der zeitunabhängigen Schrödingergleichung
können immer reell gewählt werden.

Definition: Der Paritätsoperator P (’Spiegelungsoperator’ - bezüglich y-Achse) wirkt
auf eine Funktion f (x) so, dass das Vorzeichen des Arguments geändert wird:

P f (x) = f (−x)

P fgerade︸ ︷︷ ︸
z.B. cos

=+ fgerade P fungerade︸ ︷︷ ︸
z.B. sin

=− fungerade

fgerade(x) = ψ(x)+ψ(−x) fungerade(x) = ψ(x)−ψ(−x)

10.11.2011

IV.2. Die Schrödingergleichung als Eigenwertgleichung -
stationäre Schrödingergleichung

H|ψ〉= E|ψ〉

IV. Zeitunabhängige Schrödingergleichung
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Anmerkung: allgemeinere Form einer Eigenwertgleichung: A|ψ〉 = a|ψ〉 wobei z.B.

A = σz =

(
1 0
0 −1

)
der Operator und a z.B = 1 der Eigenwert ist (die Eigenwerte

von σz mit zugehörigen Eigenvektoren sind: 1 mit
(1

0

)
und −1 mit

(0
1

)
)

da die Schrödingergleichung als Eigenwertgleichung ein Spezialfall der stationären
Schrödingergleichung ist, ist sie von der Zeit unabhängig

〈H〉= 〈ψ|H|ψ〉= 〈ψ|E|ψ〉= E 〈ψ|ψ〉︸ ︷︷ ︸
=1

= E

E hat keine Unschärfe:

∆E = ∆H =
√
〈H2〉−〈H〉2 =

√
〈ψ|HH|ψ〉︸ ︷︷ ︸

=E2

−E2 = 0

Theorem: (aus der linearen Algebra) Eigenwerte von hermitischen Operatoren sind
reell und die Eigenvektoren zu verschiedenen Eigenwerten sind zueinander orthogo-
nal. (wir wollen reelle Eigenwerte→ deshalb verwenden wir hermitische Operatoren)

Die Anzahl der Eingenwerte entspricht der Anzahl der Zustände⇒ Spektrum

Vereinfachung der Schreibweise: H|ψn〉= En|ψn〉
|ψn〉≡|n〉→ H|n〉= En|n〉

Kronecker-Delta: δnm = 〈n,m〉
Vollständigkeitsrelation: ∑n |n〉〈n|= 1 vollständige Beschreibung des Systems

IV.3. Entwicklung in stationäre Zustände

Unter Verwendung des Theorems auf S.35 können wir einen gegebenen Zustand in
ein vollständiges orthonormales System von Energie-Eigenzuständen entwickeln.
beliebiger Zustand durch |ψ〉= ∑n〈n|n〉 beschrieben

allgemeiner Lösungsweg:

|ψ〉= c1

( )
+ c2

( )
+ . . .+ cn

( )
cn = 〈n|ψ〉= 〈n|

∫
dx|x〉〈x|︸ ︷︷ ︸

1→kontinuierl. VONS

|ψ〉=
∫

dx〈 n|x︸︷︷︸
∈C

〉〈n|ψ︸︷︷︸
∈C

〉=
∫

dxψ
∗(x)ψ(x)

Beispiel:

ih̄
∂

∂ t
ψ(x, t) = Hψ(x, t) mit der speziellen Lösung:

ψn(x, t) = ψn(x)e−
i
h̄ Ent (gesamte Lösung für Schrödingergleichung)

IV. Zeitunabhängige Schrödingergleichung
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allgemeine Lösung: ’Superposition’

ψ(x, t) = ∑
n

cnψn(x, t) = ∑
n

cnψn(x)e−
i
h̄ Ent

wobei cn . . . Entwicklungskoeffizienten
betrachten t = 0: Skalarprodukt mit ψm∫

dxψm(x)ψ(x,0) =
∫

dxψm(x)∑
n

cnψn(x)e−
i
h̄ En·0︸ ︷︷ ︸
=1

⇒ 〈ψm|ψ(x,0)〉= ∑
n

cnδnm⇒ cn = 〈ψn|ψ(x,0)〉

das ist die Physikalische Interpretation der Entwicklungskoeffizienten

sei A . . . Observable, die den Zustand |ψn〉 erzeugt: A|ψn〉= an|ψn〉
also ist der Erwartungswert 〈A〉= 〈ψn|Aψn〉= an genau der Eigenwert

• eine Messung der Observablen A produziert immer das Resultat an, falls der
Zustand |ψn〉 war.
⇒ Unsicherheit = 0, ∆A = 0

• Weiters ändert sich nichts am Zustand |ψn〉 bei der Messung.

|ψn〉
A→ |ψn〉

• Was passiert falls das System in einem beliebigen Zustand |ψ〉 ist?

〈A〉= 〈ψ|Aψ〉= ∑
m
〈cmψm|︸ ︷︷ ︸
=c∗m〈ψm|

A∑
n
|cnψn〉= ∑

m
∑
n

c∗mcn〈ψm|A|ψn〉=

= ∑
m

∑
n

c∗mcnan〈ψm|ψn〉= ∑
m

∑
n

c∗mcnanδmn = ∑
n
|cn|2an

⇒ cn sind Wahrscheinlichkeitsamplituden um aus dem allgemeinen Zustand |ψ〉
in den Eigenzustand |ψn〉 zu kommen.
⇒ |cn|2 ist die Wahrscheinlichkeit des Übergangs von |ψ〉 in |ψn〉 bzw. die Wahr-
scheinlichkeit, mit der man den Messwert an findet.
⇒ Gesamtwahrscheinlichkeit: ∑

n
|cn|2 = 1

Damit gilt im Allgemeinen: Die Messung einer Observablen A eines Systems im
Zustand |ψ〉 ändert diesen Zustand in einen Eigenzustand |ψn〉 der Observable. Dies
nennt man auch Reduktion oder Kollaps der Wellenfunktion.

15.11.2011
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IV.4. Endlicher Potentialtopf

gehen aus von Schrödinger-Gleichung:(
− h̄2

2m
∂ 2

∂x2 +V (x)
)

ψ(x) = Eψ(x)
wählen Potential: V (x) = −u = −V0 falls −a = −L ≤ x ≤
L = a,
sonst V (x) = 0
studieren Fall: −V0 ≤ E ≤ 0
⇒ Bindungszustände des Teilchens im Potenti-
al
Gebiet I: (−∞,−a]

d2

dx2 ψ = κ
2
ψ κ =

1
h̄

√
−2mE ∈ R,≥ 0

ψ(x) = Ae−κx +Beκx

Wegen der Normierung gilt: Ae−κx = 0

⇒ ψ(x) = Beκx

Gebiet II: [−a,a]
d2

dx2 ψ =−q2
ψ q =

1
h̄

√
2m(E +V0) ∈ R,≥ 0

(weil E nie negativer ist als V0)

ψ(x) = e±iqx
ψ(x) =C cos(qx)+Dsin(qx)

Gebiet III: [a,∞), wie I
ψ(x) = Eeκx +Fe−κx

Eeκx = 0 aus physikalischen Gründen

⇒ ψ(x) = Fe−κx

trennen gerade und ungerade Lösungen:
gerade Lösungen:

ψ
(+)(x) =


Beκx (I)
C cos(qx) (II)
Be−κx (III)

Konstante bei (III) ist B wegen der Stetigkeit von ψ(x) und ψ ′(x) (siehe Skizze), die
wir verlangen (physikalisch sinnvoll)

IV. Zeitunabhängige Schrödingergleichung
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ungerade Lösung:

ψ
(−)(x) =


Beκx (I)
Dsin(qx) (II)
−Be−κx (III)

In den Bereichen (I) und (III) gibt
es eine Aufenthaltswahrscheinlich-
keit des Teilchens (klassisch: verbo-
ten!)⇒ Tunneleffekt
(es gibt eine bestimmte Eindringtie-
fe, die beim Grundzustand am tief-
sten ist)
Es gibt diskrete Energiewerte
ψ(x) und ψ ′(x) sind stetig bei x = L,
also muss gelten:

ψ ′(L)
ψ(L)

=
−Cqsin(qL)

C cos(qL)︸ ︷︷ ︸
(II)

=
−Bκe−κL

Be−κL︸ ︷︷ ︸
(III)

⇒ q tan(qL) = κ

⇒ Gleichung bestimmt Werte von E, weil q = 1
h̄

√
2m(E +V0) κ = 1

h̄

√
−2mE

graphische Lösung:
Def: z = qL z0 =

L
h̄
√

2mV0

κ2 +q2 = 2mV0
h̄2 =

z2
0

L2

κ2L2

q2L2 =
z2

0−z2

z2

⇒ κ

q
=

√
(
z0

z
)2−1

tan(z) =
√

(
z0

z
)2−1

IV. Zeitunabhängige Schrödingergleichung
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z0 =
1
h̄
√

2mV0 = 8 (durch Wahl von V0)⇒ 3 Lösungen: z1,z2,z3 ⇒ E1,E2,E3 diskrete Wer-
te für Energie
Geht man mit dem Potentialtopf tiefer, so wird z0 größer werden, dann gibt es mehr
Zustände. Also es gibt weitere Energieniveaus (diskrete Zustände).
Geht man mit dem Potentialtopf hinauf, so werden es immer weniger Zustände, aber
der letzte Zustand verschwindet nie.

16.11.2011

IV.5. Tunneleffekt

betrachten folgendes Potential: V (x) =

{
V0 −L≤ x≤ L
0 sonst

(V0 > 0)

wir nehmen an: E <V0: Teilchen incoming

klassisch: einlaufend, wird reflektiert

QM - Schrödinger-Gleichung: Hψ = Eψ

(
− h̄2

2m
d2

dx2 +V (x)
)

ψ(x) = Eψ(x)
Lösungen ψ(x):
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ψ(x) =



Aeikx +Be−ikx (I)
Ce−qx + Deqx︸︷︷︸

0 aus physikalischen Gründen

(II)

Feikx + Ge−ikx︸ ︷︷ ︸
0 aus physikalischen Gründen

(III)

k = 1
h̄

√
2mE > 0 q = 1

h̄

√
2m(V0−E)> 0

D = 0 für genügend großes L und G = 0 weil keine Reflexion im Unendlichen stattfin-
det.
Im Gebiet I: einlaufende Welle und reflektierte Welle, wie klassisch
Im Gebiet II: ψ(II) 6= 0 (exponentieller Abfall), das ist klassisch unmöglich
Im Gebiet III: ψ(III) 6= 0, klassisch unmöglich, auslaufende Welle mit gleicher Fre-
quenz (Energie) aber geringerer Intensität
dann ist Transmissionswahrscheinlichkeit (Wahrscheinlichkeit, dass Teilchen ’durch-
tunnelt’):

|ψ(L)|= |C|2e−
4L
h̄

√
2m(V0−E)

Transmissionskoeffizient:

T (E) = |ψ(L)|2normiert = e−
4L
h̄

√
2m(V0−E)

für Potentialberg (verlaufende Kurve, Form ähnlich wie Gaußkurve) von x1 bis x2
kann man mit Stufen approxiemieren:

T (E) = e−
2
h̄

∫ x2

x1

dx2
√

2m(V (x)−E) Gamow-Faktor

Physikalische Beispiele:

1. α-Zerfall in Kernphysik (Gamow 1928) (Abb. IV.1 - S. 42)
Atomkerne wandeln sich in andere um, durch Aussenden von α-Teilchen:
212Po→ 208Pb+α α-Teilchen: He-Kern (2 Protonen, 2 Neutronen)
Lebensdauer τ = 3 ·10−7 s, Energie Eα = 8,9 MeV

2. Potentialmodell für Elektron im Metall (Abb. IV.2 - S. 42)
im Metall sind quasi freie Elektronen, Potentialtopf ist gute Näherung
oberstes besetztes Energieniveau wird Ferminiveau (Fermienergie) genannt
W =V0−En =V0−EF (bei absolutem Nullpunkt)

3. Kalte Emission von Elektronen aus dem Metall (Abb. IV.3 - S. 43)
Elektronenemission bei Anlegen von elektrischem Feld am Metall, dadurch ver-
ändert sich das Potential und die Elektronen tunneln durch
Kraft des elektrischen Feldes: eE = F =− d

dxV (x)⇒V (x) =V0− eEx
(E . . . elektrische Feldstärke)
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Abbildung IV.1.: α-Zerfall Abbildung IV.2.: Elektron im Metall

4. Isolator zwischen zwei Metallen (Abb. IV.4 - S. 43)
auch hier gibt es den Tunneleffekt, Elektronen ’tunneln’ durch den Isolator

IV.6. Harmonischer Oszillator

Potential: V =
mω2

2
x2 , algebraische Methode zum Lösen der Schrödinger-Gleichung:

gehen aus von Hamilton-Operator: H = p2

2m + mω2

2 x2

lösen Eigenwert-Gleichung: Hψ = Eψ

1
2m

[p2 +(mωx︸︷︷︸
x

)2]ψ = Eψ

Operator: p2+x2 = (x− ip) ·(x+ ip) OK in klass. Physik, aber 6= in QM, da [X ,P] = ih̄ 6= 0
Wir machen etwas in dieser Art (Faktorisierung), aber werden noch Zusatzterme be-
kommen. Dazu führen wir folgende Operatoren ein:
a = 1√

2mω h̄
(mωx+ ip) Vernichtungsoperator, annihilation-operator

a† = 1√
2mω h̄

(mωx− ip) Erzeugungsoperator, creation-operator
⇒ x und p

x =
√

h̄
2mω

(a+a†) p =−i
√

mω h̄
2 (a−a†)

es gelten folgende Kommutator-Relationen:
[a,a†] = 1 (folgt aus [x, p] = ih̄), [a,a] = [a†,a†] = 0
drücken Hamilton-Operator durch a,a† aus: H = 1

2m [p
2 +(mωx)2]
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Abbildung IV.3.: Kalte Emission Abbildung IV.4.: Isolator

a†a =
1

2mω h̄
{(mωx)2− imω (px− xp)︸ ︷︷ ︸

=[p,x]

+p2}

aa† =
1

2mω h̄

{
(mωx)2− imω[x, p]+ p2}

⇒ H =
h̄ω

2
[a†a+aa†]

erinnern: [a,a†] = 1⇒ aa† = a†a+1

⇒ H = h̄ω[a†a+
1
2
]

Eigenwertgleichung: Hψ = Eψ

⇒ h̄ω[a†a+
1
2
] |ψ〉= E |ψ〉

N = a†a heißt Teilchenzahloperator oder Besetzungszahloperator
⇒ Kommutatorrelation: [N,a†] = a† [N,a] =−a
suchen Eigenwerte und Eigenfunktionen von Teilchenzahloperator N
N|ψn〉= n|ψn〉 (es wird siche herausstellen: n ∈ N0) Notation: |ψn〉= |n〉 ⇒ N|n〉= n|n〉
Eigenwerte: aus Skalarprodukt n〈n|n〉= 〈n|N|n〉= 〈n|a†a|n〉= 〈an|an〉 ≥ 0
⇒ n≥ 0 ⇒ n = 0 ist niedrigster Wert
für n = 0⇒ N|0〉= 0 niedrigster Wert⇒ |0〉 ist Grundzustand, Vakuum
a†a|0〉= 0⇒ a|0〉= 0 das ist eine Bestimmungsgleichung für Grundzustand
|0〉= |ψ0〉 → ψ0(x) als Wellenfunktion angeschrieben
Grundzustand: (mωx+ i h̄

i
d
dx)ψ0(x) = 0⇔ (mω

h̄ x+ d
dx)ψ0(x) = 0

→ (als Physiker)
∫ dψ0

ψ0
=
∫
−mω

h̄ xdx⇒ lnψ0 =−mω

2h̄ x2 + lnc

ψ0(x) = ce−
mω

2h̄ x2
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Normierung:

∫
∞

−∞

|ψ0(x)|2dx = 1 = |c2|
∫

∞

−∞

e−
mω

h̄ x2
dx =

√
π h̄
mω
⇒ c =

(mω

π h̄

) 1
4

aus Eigenwertgleichung folgt: N→ 0⇒ E0 =
h̄ω

2 Grundzustandsenergie

für n = 0,1,2, . . .⇒ Energiespektrum: En = h̄ω(n+ 1
2)

22.11.2011

Zusammenfassung:

Hamilton Operator: H = p2

2m + mω2

2 x2

Eigenwertgleichung: Hψn(x) = Enψn(x) n ∈ N0
suchen Lösungen mittels algebraischer Methode:
Def. a = 1√

2mω h̄
(mωx+ ip) Vernichtungsoperator

a† = 1√
2mω h̄

(mωx− ip) Erzeugungsoperator
⇒ x = . . .(a+a†) p = . . .(a−a†)
diese in H = . . . einsetzen (dabei verwenden: [a,a†] = 1):

⇒ H = h̄ω(a†a+
1
2
)

N = a†a . . . Teilchenzahl- bzw. Besetzungszahloperator
N erfüllt folgende Eigenwertgleichung: N|n〉= n|n〉
Def. Grundzustand - Vakuum
a|0〉= 0 ⇒ N|0〉= 0⇒6 ∃ Quanten
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Grundzustands-Wellenfunktion 〈x|n〉= ψn(x)
aus p = h̄

i
d
dx folgt: um 〈x|a|0〉 auszurechnen muss man a als Funktion von x darstellen,

damit ergibt sich daraus (mω

h̄ x+ d
dx)ψ0(x) = 0

⇒ ψ0(x) = Ne−
mω

2h̄ x2

N aus Normierung (
∫

∞

−∞
|ψ0(x)|2dx = 1)

⇒
∫

∞

−∞
e−αx2

dx =
√

π

α
,⇒ N = (mω

π h̄ )
1
4

Energien: En = h̄ω(n+ 1
2)⇒∃ Grundzustandsenergie E0

E0 =
h̄ω

2
> 0

E1 =
3
2 h̄ω

Lemma: Wenn |n〉 ein Eigenzustand von N mit Eigenwert n ist (also wenn N|n〉= n|n〉),
dann ist a† angewandt auf n (also a†|n〉) Eigenzustand von N mit Eigenwert (n+1).
Beweis: N(a†|n〉) = (a†N +a†)|n〉= (n+1)a†|n〉
(weil [N,a†] = a†⇒ Na† = a†N +a†) a†|n〉 → |n+1〉

�

Proportionalitätsfaktor aus Normierung: 〈a†n|a†n〉= 〈n|aa†|n〉= 〈n|a†a+1|〉=(n+1)〈n|n〉=
(n+1) ( weil [a,a†] = 1 und weil 〈n|n〉= 1 wegen Normierung)

⇒ a†|n〉=
√

n+1|n+1〉

Zustand Eigenwert
Grundzustand |0〉 0
1. angeregter Zustand |1〉= 1√

1
a†|0〉 1

2. angeregter Zustand |2〉= a†|1〉= 1√
2·1(a

†)2|0〉 2
3. angeregter Zustand |3〉= a†|2〉= 1√

3·2·1(a
†)3|0〉 3

...
...

n. angeregter Zustand: |n〉= 1√
n!
(a†)n|0〉 n

analog für den Vernichtungsoperator a:
Lemma: Wenn |n〉 Eigenzustand von N mit Eigenwert n ist, dann ist a|n〉 ein Eigenzu-
stand von N mit Eigenwert (n−1).

⇒ a|n〉=
√

n|n−1〉

Wellenfunktion:

ψn(x) =
1√
n!

(mω

π h̄

) 1
4
(

a†
)n

ψ0(x)

a† =

√
h̄

2mω

(
mωx

h̄
− d

dx

)
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Wellenfunktionen:
n = 0 ψ0(x)∼ e−

mω

2h̄ x2
gerade Funktion | · (mω

h̄ x− d
dx)

n = 1 ψ1(x)∼ xe−
mω

2h̄ x2
ungerade Funktion, 1 Knoten | · (mω

h̄ x− d
dx)

n = 2 ψ2(x)∼ (x2 + const.)e−
mω

2h̄ x2
gerade Funktion, 2 Knoten

...
Polynome sind genau die Hermit-Polynome Hn(x) (diese bilden ein vollständiges Sy-
stem im Funktionenraum)

nψn(x) = NHn(x)e−
mω

2h̄ x2

23.11.2011

Harmonischer Oszillator

a|n〉=
√

n|n−1〉 Vernichtungsoperator
a†|n〉=

√
n+1|n+1〉 Erzeugungsoperator

{|n〉} Fock-Raum (vollständiges orthonormiertes System)
erinnern: X=

√
h̄

2mω
(a+a†) Ortsoperator

P=−i
√

h̄mω

2 (a−a†) Impulsoperator
bisher: 〈X〉ψn = 〈ψn|x|ψn〉=

∫
∞

−∞
dxψ∗n (x) ·ψn(x) - Funktionen einsetzen, ausrechnen

jetzt, im Fock-Raum:
〈X〉= 〈n|X|n〉=

√
h̄

2mω
〈n|a+a†|n〉=

√
h̄

2mω

(√
n〈n|n−1〉+

√
n+1〈n|n+1〉

)
= 0

(weil 〈n|m〉= δnm⇒ 〈n|n+1〉= 0 weil n 6= n+1)
〈P〉= 0 (gleiche Argumentation)
〈X2〉 = 〈n|X2|n〉 = h̄

2mω
〈n|a2 + a†a + aa† + (a†)2|n〉 a2 und (a†)2 werden wegfallen (sind

null), Argument wie oben
N = a†a N|n〉= n|n〉 [a,a†] = 1→ aa†−a†a = 1 und damit:

〈X2〉= h̄
2mω

〈n| a2︸︷︷︸
0

+ a†a︸︷︷︸
N

+ aa†︸︷︷︸
a†a+1=N+1

+(a†)2︸ ︷︷ ︸
0

|n〉= h̄
2mω︸ ︷︷ ︸
:=X2

0

(2n+1) = X2
0(2n+1)

analog 〈P2〉,⇒ ∆X ·∆P= . . .≥ h̄
2
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Nullpunktsenergie (Grundzustandsenergie)

klassisch: E = 0 niedrigste Energie
QM: suchen Grundzustand von Operator, Hamilton: H = T +V (kinet. + potentielle
Energie)
ψ0→ E0, wenn E sinkt⇒ ∆X sinkt
Heisenberg: ∆X ·∆P≥ h̄

2 ⇒ ∆P≥ h̄
2

1
∆X

da ∆X sinkt⇒ ∆P steigt⇒ E steigt und stabilisiert sich

Satz: Die Nullpunktsenergie E0 =
h̄ω

2 ist der kleinste Energiewert, der mit der Hei-
senberg’schen Unschärferelation verträglich ist.
Übung (kommt vielleicht in UE): Energie eines harmon. Oszillators nur mit Heisen-
berg berechnen:
E = 〈H〉= 1

2m〈p
2〉+ mω2

2 〈X
2〉, Abschätzung nach unten:

Unschärferelation hier: 〈X2〉 · 〈P2〉 ≥ h̄2

4 (weil 〈X〉2 = 〈P〉2 = 0)
⇒ (Einsetzen oben) E = 〈H〉 ≥ 1

2m〈P
2〉+ mω2

2
h̄2

4
1
〈P2〉

suche Minimum:⇒ ∂

∂ 〈P2〉 =
1

2m −
mω2

2
h̄2

4
1
〈P2〉2 = 0

⇒ 〈P2〉min⇒ E(〈P2〉min) = Emin =
1
2 h̄ω

IV.7. Resumee

wichtigste Axiome der QM und physikalische Interpretation

1. Ein Physikalisches System wird vollständig durch einen Vektor |ψ〉 im Hilber-
traum (vollst. VR) beschrieben.

2. Die Physikalischen Größen, Observablen, sind hermitische Operatoren A im Hil-
bertraum.

3. Das Resultat einer Messung ist ein Eigenzustand (System ist dann im Eigen-
zustand), bzw. das Ergebnis selbst ist der Eigenwert, eines Operators: A|n〉 =
an|n〉,an ∈ R Eigenwert.
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4. Die Wahrscheinlichkeit für einen bestimmten Eigenwert ist gegeben durch |〈n|ψ〉|2
(Übergangswahrscheinlichkeit), 〈n|ψ〉 heißt auch Übergangswahrscheinlichkeit-
samplitude, das ist Projektion von allgemeinem |ψ〉 auf das vollständige Ortho-
normalsystem {|n〉}.

5. Jeder allgemeine Zustand ist entwickelbar in vollständiges Orthonormales Sy-
stem, also |ψ〉 = ∑n cn|n〉,cn = 〈n|ψ〉, |cn|2 ist die Wahrscheinlichkeit dafür, dass
Zustand |n〉 im allgemeinen Zustand |ψ〉 vorkommt.

6. Der Erwartungswert von Messungen, die mit A beschrieben werden, also 〈A〉 =
〈ψ|A|ψ〉= ∑n,m c∗mcnan 〈m|n〉︸ ︷︷ ︸

δmn

= ∑
n
|cn|2an = 〈A〉 , also der Erwartungswert von A ist

die Summe der Eigenwerte gewichtet mit |cn|2, also |cn|2 ist die Wahrscheinlich-
keit, an zu messen.
Wenn A = H dann ist an = En, also die ’Anzahl der Klicks’ im Experiment.

7. Projektionspostulat: (von Neumann)
Def. Projektionsoperator: Pn = |n〉〈n|
Eigenschaften:
P2

n = Pn, Pm ·Pn = 0 - Orthogonalitätsrelation
∑n Pn = ∑n |n〉〈n|= 1 (Einheitsoperator) - Vollständigkeitsrelation
Projektion: Pn|ψ〉= |n〉〈n|ψ〉= cn|n〉
1 · |ψ〉= ∑ |n〉〈n|ψ〉= ∑n cn|n〉

8. Die Dynamik oder Zeitentwicklung eines Systems ist gegeben durch die Schrö-
dingergleichung:
ih̄ ∂

∂ t ψ(x, t)=Hψ(x, t) wobei |ψ(x, t)|2 die Wahrscheinlichkeitsdichte ist (Born), und
H = T +V =− h̄2

2m
d2

dx2 +V (x) (kinetische + potentielle Energie).

9. Unschärferelation zwischen Meßwerten: ∆A·∆B≥ 1
2 |〈[A,B]〉|wobei ∆A=

√
〈A2〉−〈A〉2
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V. Drehimpuls, Spin und Statistik,
dreidimensionale Schrödingergleichung

V.1. Drehimpuls

aus der klassischen Mechanik: Drehimpuls ~L =~x×~p

ε-Tensor:

εi jk =


+1 Permutation gerade
0 ≥ 2 gleiche Indizes
−1 Permutation ungerade

→ Komponenten des Drehimpulses: Li = εi jkx j pk

(z.B. L1 = ε123x2 p3 + ε132x3 p2 = x2 p3− x3 p2)
klassische Mechanik→ QM
~x,~p→ ~X,~P=−ih̄~∇ Operatoren
nützen Kommutator aus: [x j, pk] = ih̄δ jk
unter Verwendung der Kommutatorrelationen erhält man die Drehimpuls-Algebra:
(Berechnung siehe UE)

[Li,L j] = ih̄εi jkLk

[Li,x j] = ih̄εi jkxk

[Li, p j] = ih̄εi jk pk

suchen Eigenfunktionen und Eigenwerte des Drehimpuls-Operators:
es gilt Kommutator: [~L2,Li] = 0
(weil [~L2,Li] = Li[Li,L j]+ [Li,L j]Li = ih̄(εi jkLiLk + εi jkLkLi) = 0)
⇒~L2 und Li haben gleiche Eigenfunktionen (UE)
wähle: i = 3⇒ Lz
suchen Eigenwerte von~L2 und Lz
diese sind charakterisiert durch die Drehimpulsquantenzahl:

l =
N
2

N = 0,1,2,3, . . .

(das folgt mathematisch aus der Drehimpuls-Algebra)
l = 0,1,2, . . . ganzzahlig - Bosonen (Bose-Teilchen→ Bose-Statistik) z.B. Photonen
oder l = 1

2 ,
3
2 ,

5
2 , . . . halbzahlig - Fermionen (Fermi-Teilchen → Fermi-Statistik) z.B.

Elektronen, Protonen
bezeichnen Eigenwerte von Lz→ µ = h̄m
m =−l,−l +1, . . . l−1, l m . . . magnetische Quantetzahl
z.B. −1,0,1 oder −2,−1,0,1,2⇒ µ hat (2l +1) Werte
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Eigenwerte und Eigenfunktionen

LzYlm = h̄mYlm

Ylm . . . Eigenfunktionen (Kugelflächenfunktionen, tabelliert, kann man nachschlagen)
z.B. Y00 =

( 1
4π

) 1
2
∫
|Y00|dΩ = 1 Y10 =

( 3
4π

) 1
2 cosθ Y1±1 =±

( 3
8π

) 1
2 sinθe±iϕ

~L2Ylm = h̄2l · (l +1)Ylm

{Ylm(θ ,ϕ)} bilden ein vollständiges orthonormiertes System
h̄m und h̄2l(l +1) sind die Eigenwerte

29.11.2011

V.2. Dreidimensionale Schrödingergleichung

erinnern: Drehimpuls
~L = ~x×~p︸ ︷︷ ︸

Operatoren

[xi, p j] = ih̄δi j

Kommutator:

[Li,L j] = ih̄εi jkLk ⇒ [~L2,Li] = 0 i = 1,2,3⇒ gemeinsame Eigenfunktionen

Eigenwertgleichungen:

~L2Ylml = h̄2l(l +1)Ylm LzYlm = h̄mYlm

(Y = Y (Θ,ϕ) l = 0,1,2, . . . m =−l, . . . ,0, . . . , l)

z.B. l = 1 m =−1,0,1

dreidimensionale Schrödingergleichung:

Hψ(~x) = Eψ(~x) H =− h̄2

2m
∆+V (~x)

dreidimensionaler Laplace-Operator: ∆ = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 in kartesischen Koordinaten
in Polarkoordinaten:

∆ =
1
r2

∂

∂ r
(r2 ∂

∂ r
)+

1
r2 sinΘ

∂

∂Θ
(sinθ

∂

∂Θ
)+

1
r2 sin2

Θ

∂ 2

∂ϕ2

Drehimpuls-Quadrat in Polarkoordinaten:

~L2 =−h̄2
(

1
sinΘ

∂

∂Θ
(sinΘ

∂

∂Θ
)+

1
sin2

Θ

∂ 2

∂ϕ2

)
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Laplace-Operator:

∆ · (− h̄2

2m
) =− h̄2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
)+

~L2

2mr2

⇒ Schrödingergleichung unter der Annahme, dass das Potential kugelsymmetrisch
ist (V (~x) =V (r)) [

− h̄2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
+

~L2

2mr2 +V (r)

]
ψ(r,Θ,ϕ) = Eψ(r,Θ,ϕ)

Ansatz: ψ(r,Θ,ϕ) = Rl(r)Ylm(Θ,ϕ)[
−h̄2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
)+V (r)+

h̄2l(l +1)
2mr2

]
Rl(r)Ylm(Θ,ϕ) = ERl(r)Ylm(Θ,ϕ)

Abbildung V.1.: Coulombpotential

jetzt (aber nur jetzt!) darf man Y kürzen und
ehält:[
−h̄2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
)+V (r)+

h̄2l(l +1)
2mr2

]
Rl(r)=ERl(r)

außerdem kann man zu einem effektiven Po-
tential zusammenfassen:

Ve f f (r) =V (r)+
h̄2l(l +1)

2mr2

(der letzte Term heißt Zentrifugalterm)
z.B. Coulomb-Potential (siehe Abbildung V.1)

⇒ einfache Schrödinger-Gleichung[
−h̄2

2m
1
r2

∂

∂ r
(r2 ∂

∂ r
)+Ve f f (r)

]
Rl(r) = ERl(r)

Vereinfachung: reduzierte Wellenfunktion
ul(r) = rRl(r) ∂

∂ r u = u′ = R+ rR′ ∂ 2

∂ r2 u = u′′ = 2R′+ rR′′

damit: [ 1
r2

∂

∂ r (r
2 ∂

∂ r )]R = [2
r

∂

∂ r +
∂ 2

∂ r2 ]R

⇒ u′′+
2m
h̄2 (E−Ve f f (r))ul(r) = 0

das ist die eindimensionale Schrödingergleichung in der reduzierten Wellenfunktion
⇒ leichter lösbar

Normierung: 1 =
∫
|ψ(~x)|2d3x =

∫
∞

0 |R(r)|2r2dr
∫

4π

dΩ|Y (Ω)|2︸ ︷︷ ︸
1
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⇒ Normierungsbedingung:
∫

∞

0
|ul(r)|2dr = 1

Abbildung V.2.: Coulombpotential H-Atom

⇒ in drei Dimensionen braucht ein Po-
tential eine gewisse kritische Größe, da-
mit überhaupt Bindungen existieren (es
muss in drei Dimensionen nicht immer
ein Bindungszustand existieren)

Beispiel Wasserstoff-Atom: Coulomb-Potential
V =−e2

r
es gibt unendlich viele Zustände
setzt man dieses V oben ein, so erhält

man: E =− me4

2h̄2n2
entartet für alle l (alle

l geben den gleichen Energiewert)
30.11.2011

V.3. Stern-Gerlach-Experiment - Spin des Elektrons

1. Teilchen im Magnetfeld (klassischer Zugang)

Ein geladenes rotierendes (spinning) Teilchen erzeugt einen magnetischen Dipol (ma-
gnetisches Dipolmoment).
~s . . . Eigendrehimpuls, ~µ . . . magnetisches Dipolmoment (diese beiden sind parallel)
~µ = γ~S wobei γ . . . gyromagnetisches Verhältnis (Erklärung siehe Wikipedia, e

2mc wird
magnetisches Magneton genannt, glaub das ist die kleinste magnetische Einheit),
γ = g e

2mc , beim Elektron ist g = 2
Dieser magnetische Dipol ~µ wird nun in ein Magnetfeld ~B gegeben (~µ und ~B verschie-
den orientiert).
→ Drehmoment ~µ×~B, Dipol richtet sich entlang der Feldlinien aus (Kompass)
Energie (damit verbunden) H =−~µ ·~B
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⇒ Hamilton-Operator für ein Teilchen mit Spin:

H =−γ~S ·~B

2. Stern-Gerlach-Experiment

(1922), Silberatome (sehr kugelsymmetrische Anordnung + ein äußeres Elektron),
verwenden inhomogenes Magnetfeld (unten breiter als oben)
Dann wirkt außer dem Drehmoment auch eine Kraft ~F durch das Magnetfeld auf den
Dipol ~µ

~F =−~∇V = ~∇~µ~B(weil Potential V ≡ H da ruhend)

Abbildung V.3.: Stern-Gerlach-Experiment

~B in z-Richtung: (ẑ . . . Einheits-
vektor in z-Richtung)

~B = Bzẑ = ( B︸︷︷︸
hom

+ αz︸︷︷︸
inhom

)ẑ

⇒ Fz = αγSz

Spin in z-Richtung ist experi-
mentell durch die Kraft (Ablen-
kung) durch den Stern-Gerlach-
Magnet bestimmbar. Im Expe-
riment wurde eine Aufspaltung
in zwei Werte (up, down) beob-
achtet (Verhältnis 50:50). Also
der magnetische Dipol und da-
mit auch der Spin in z-Richtung Sz hat zwei Werte: up, down.
Wir wissen, dass die Eigenwerte des (Eigendrehimpulsoperators) Spins:

Szη = mh̄η η . . . Eigenfunktion

m =−s, . . . ,s⇒ (2s+1) Werte⇒ 2s+1 = 2 (es gibt nur 2 Werte für m laut Experiment)

⇒ s =
1
2

(übernehme drehimpuls-Algebra, l→ s = 1
2 )

Spinmessung mit wiederholten Stern-Gerlach-Magneten
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Wenn der Stern-Gerlach-Magnet um Winkel θ zur z-Achse gedreht wird, dann sind
die Wahrscheinlichkeiten für die Werte up und down:

P(| ↑〉) = 1− sin2 θ

2
P(| ↓〉) = sin2 θ

2

(| ↑〉 entspricht dem Vektor
(0

1

)
, | ↓〉 entspricht

(0
1

)
, der Winke θ wird von | ↑〉 in Rich-

tung | ↓〉 gemessen) bei θ = 90◦⇒ θ

2 = 45◦⇒ P(up) = P(down)
Ein Spin1

2 -Teilchen wird nach einer Drehung um 4π wieder identisch (Wahrschein-
lichkeiten gleich)! (Versuch von Rauch - Atominstitut - Neutroneninterferometrie)

1.12.2011

V.4. Mathematische Formulierung von Spin - Pauli-Matrizen

Elektronen-Spin ist ein Eigendrehimpuls und erfüllt mathematisch gesehen die Dre-
himpulsalgebra
~L→~S l = 0, 1

2 ,1
3
2 ,2, . . . → s = 1

2 ,
3
2 , . . ., wir konzentrieren uns auf s = 1

2
übernehmen Algebra vom Drehimpuls - Spin-Algebra:

[Si,S j] = ih̄εi jkSk [~S2,Si] = 0

suchen Darstellung im Spinor Raum, Basis im Spino-Raum wird gebildet durch ge-
meinsame Eigenvektoren von ~S2 und Sz
erinnern Drehimpuls: Ylm ≡ |l,m〉, analog für Spin: |s,m〉, wir betrachten Spin s = 1

2
Spinoren:

|1
2
,
1
2
〉 ≡ | ↑〉 . . . spin up

|1
2
,−1

2
〉 ≡ | ↓〉 . . . spin down
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es ist günstig, die Pauli-Matrizen einzuführen:

Si =
h̄
2

σi ~S =
h̄
2
~σ i = 1,2,3

⇒ Spin-Algebra:

[σi,σ j] = 2iεi jkσk [~σ2,σi] = 0

Eigenwert-Gleichungen:

σz| ↑〉=+| ↑〉 σz| ↓〉=−| ↓〉

Matrix σz hat zwei Eigenwerte, +1 und −1

⇒ σz =

(
1 0
0 −1

)
{| ↑〉} bilden VONS:

〈↑ | ↓〉= 0 〈↑ | ↑〉= 〈↓ | ↓〉= 1

Spinor-Darstellung:

| ↑〉=
(

1
0

)
| ↓〉=

(
0
1

)
Wie ist ~S oder ~σ zu verstehen?

~σ =


σx =

( )
σy =

( )
σz =

(
1 0
0 −1

)


(σx,σy siehe später)
wobei σi Matrizen sind, die im Spinor-Raum wirken (~σ wirkt in einem anderen Raum)
Hamilton

H ∼~S ·~B∼ ~σ ·~B︸︷︷︸
∑

3
i=1 σiBi

)| ↑〉

(σiBi . . . Linearkombination von Matrizen⇒ 2×2-Matrix)

Definition Leiter-Operatoren (klettern in Spinleiter rauf und runter)

σ± = σx± iσy

σ+| ↓〉= 2| ↑〉 σ−| ↑〉= 2| ↓〉

σ+| ↑〉= 0 σ−| ↓〉= 0
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⇒ σ+ = 2
(

0 1
1 0

)
, σ− =

(
0 0
1 0

)

⇒ σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
Eigenschaften:

σ
2
i = 1 =

(
1 1
1 1

)
tr(σi) = 0

Spin-Messprozess

1. Teilchen im Zustand | ↑〉, messen Spin entlang z-Achse
(mit einem Stern-Gerlach-Magneten wird in z-Richtung gemessen, ist das hin-
einkommende Teilchen im Zustand | ↑〉, so wird es nach oben abgelenkt → +1,
ist es im Zustand | ↓〉, so wird es nach unten abgelenkt→−1)
〈↑ |σz| ↑〉=+1〈↑ || ↑〉=+1

2. analog für Teilchen im | ↓〉-Zustand: 〈↓ |σz| ↓〉=−〈| ↓〉|| ↓〉=−1

3. Spinmessung in x-Richtung: beschrieben durch Observable σx
(bei der Spinmessung in x-Richtung liegt der Stern-Gerlach-Magnet in x-Richtung,
das Teilchen wird entweder nach hinten abgelenkt→+1 oder nach vorne→−1)
σx|+〉=+|+〉 σx|−〉=−|−〉

⇒ |+〉= 1√
2

(
1
1

)
|−〉= 1√

2

(
1
−1

)
Eigenvektoren von σx

4. analog für σy⇒ 1√
2

(1
i

) 1√
2

( 1
−i

)
Eigenvektoren von σy

Allgemeiner Spinzustand ist eine Linearkombination von | ↑〉 und | ↓〉:

|S〉= c1| ↑〉+ c2| ↓〉 wobei c1,2 ∈ C und |c1|2 + |c2|2 = 1

(Summe der Wahrscheinlichkeitsquadrate = 1)
Spinmessung in x-Richtung durch Operator σx (im Zustand | ↑〉)
〈↑ |σx| ↑〉 = 〈↑ | ↓〉 = 0 allgemein Erinnerung: Erwartungswert vom Erwartungswert
eines Operators A
〈A〉= ∑n |cn|2an, damit 〈σx〉= 1

2(+1)+ 1
2(−1) = 0

6.12.2011

V.5. 2 Teilchen mit Spin

Möglichkeiten: ↑ ↑ ↑ ↓ ↓ ↑ ↓↓ - 4 Möglichkeiten der Spin Einstellung
jedes Teilchen hat ’seinen’ Hilbertraum, wenn man das gemeinsam betrachtet multi-
pliziert man sie mit dem Tensorprodukt: | ↑〉⊗ | ↑〉
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Skalarprodukt: H . . . Hilbertraum
〈 ↑︸︷︷︸
∈Had j

| ↑︸︷︷︸
∈H

〉= 1 Zahl

äußeres Produkt:

| ↑〉〈↑ |
(1

0

)
(10) =

(
1 0
0 0

)
Tensorprodukt:
| ↑〉︸︷︷︸
∈HA

⊗ | ↑〉︸︷︷︸
∈HB

dimHAlice = dA→ 2 dimHBob = dB→ 2 (3,4, . . . möglich)

(
1
0

)
⊗
(

1
0

)
=

 1 ·
(1

0

)
0 ·
(1

0

)
=


1
0
0
0

 dim(HA⊗HB) = dA ·dB

allgemein:
(

a
b

)
⊗

 m
n
r

=


am
an
ar
bm
bn
br


Tensorprodukt von Operatoren: z.B.: σx wirkt in A, zur Verdeutlichung oft dazuge-
schrieben, σz wirkt in B

σ
A
x ⊗σ

B
z =

(
0 1
1 0

)
⊗
(

1 0
0 −1

)
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


allgemein für beliebige Matrix D:

(
a b
c d

)
⊗D =

(
aD bD
cD dD

)
Regel: für A,B Matrizen und x,y Vektoren: (A⊗B)(x⊗ y) = Ax⊗By (A wirkt nur auf x
und B nur auf y weil diese jeweils im selben Hilbertraum sind)

2 Spinteilchen:

| ↑〉A⊗| ↑〉B ≡ | ↑〉| ↑〉 ≡ | ↑↑〉 (Notation)

betrachten nur Spinanteil der Wellenfunktion: ↑,↓
totale Wellenfunktion: |ψ〉total = |ψ〉Ortsteil⊗|Spin〉
im Hamilton: H = p2

2m +V (x)+HSpin HSpin =−µ~S ·~B
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Gesamtspin:
~S =~S(A)+~S(B)

in z-Richtung (∃ 4 Eigenzustände): Sz| ↑↑〉= (S(A)z +S(B)z )| ↑〉A⊗| ↑〉B = h̄(1
2 +

1
2)| ↑↑〉

⇒ Sz| ↑↑〉= h̄| ↑↑〉 Sz| ↓↓〉=−h̄| ↓↓〉 Sz| ↑↓〉= Sz| ↓↑〉= 0

13.12.

System von 2 Teilchen mit Spin

↑↑, ↓↑, ↑↓, ↓↓ . . . 4 einstellige Möglichkeiten
Zustände: | ↑〉A⊗| ↓〉B︸ ︷︷ ︸

1 Zustand

Tensorprodukte im Hilbertraum H = HA⊗HB (Alice-Bob)

Spin total, gesamt ~S =~S(A)+~S(B)→ s = sA± sB︸ ︷︷ ︸
Eigenwerte

→ 1,0 S = 1 . . . Triplet, S = 0 . . . Singlet

Spin in z-Richtung: SZ = S(A)Z +S(B)Z → m · h̄ = s

m =−s, . . . ,+s mh̄ = (mA +mB)h̄→


+1
0
−1

für 0 haben wir eine Entartung:

{
(↑↓+ ↓↑) Triplet
(↑↓ − ↓↑) Singlet

für +1: Spin parallel nach ↑↑
für −1: Spin parallel nach ↓↓

Tensorproduktregel: (A ·B)(|x〉⊗ |y〉) = a|x〉+B|y〉

SZ| ↑〉A⊗| ↓〉B = (S(A)Z +S(B)Z )| ↑〉a⊗| ↓〉B , wobei S(A)Z auf | ↑〉A wirkt

genauer: S(A)Z = SA
Z⊗1B (4×4) = (2×2)⊗ (2×2)

analog: S(B)Z = 1A⊗SB
Z

Gesamtspin ist Summe der Teiloperatoren

SZ = S(A)Z +S(B)Z

Spin-Messung von Alice und Bob

Alice (links) und Bob (rechts) messen mittels Stern-Gerlach-Magneten den Spin in z-
Richtung von 2 Teilchen. Dieser Vorgang wird Beschrieben durch das Produkt der Teiloperatoren
in z-Richtung.
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ρ
(A)
Z → h̄

2σ
(A)
Z σ

(A)
Z ·σ (B)

Z

σ
(A)
Z ·σ (B)

Z | ↑〉A⊗| ↓〉B = (σ
(A)
Z ⊗1B) · (1A⊗σ

(B)
Z )| ↑〉A⊗| ↓〉B = σ

A
Z ⊗σ

B
Z | ↑〉A⊗| ↓〉B =

= σ
A
Z | ↑〉A︸ ︷︷ ︸
+1

⊗σ
B
Z | ↓〉B︸ ︷︷ ︸
−1

= (+1)(−1) | ↑〉A︸︷︷︸
(1

0)

⊗| ↓〉B︸︷︷︸
(0

1)

=−


0
1
0
0


Erwartungswert | ↑↓〉= | ↑〉A⊗| ↓〉B

〈↑ |A⊗〈↓ |B(σA
Z ⊗σ

B
Z )| ↑〉A⊗| ↓〉B =−1

〈↑ |A⊗〈↑ |B(σA
Z ⊗σ

B
Z )| ↑〉A⊗| ↑〉B =+1

Wenn wir den Stern-Gerlach-Magneten in x-Richtung drehen → kommt nix raus →
Erwartungswert 0:
Spinmessung von Alice und Bob in x-Richtung (| ↑↓〉)

〈↑ |A⊗〈↓ |B(σA
X ⊗σ

B
X )| ↑〉A⊗| ↓〉B =

= 〈↑ |σA
X | ↑〉A︸ ︷︷ ︸
|↓〉A

〈↓ |σB
X | ↓〉B︸ ︷︷ ︸
|↑〉B

= 〈↑ | ↓〉A︸ ︷︷ ︸
=0

〈↓ | ↑〉B︸ ︷︷ ︸
=0

= 0

14.12.

V.6. Spin und Statistik

Geg.: 2-Teilchen-System - identische Teilchen
Wellenfunktion abhängig von:

• Koordinaten (~x1 für Teilchen 1 bzw.~x2 für Teilchen 2)

• Zeit

Bezeichnung: ψ(~x1,~x2, t)
Die Zeitentwicklung des Systems (→ Dynamik) wird beschrieben durch die Schrödin-
gergleichung:

ih̄
∂

∂ t
ψ(~x1,~x2, t) = Hψ(~x1,~x2, t)

Hamiltonoperator:

H =− h̄
2m

∆1−
h̄

2m
∆2 +V (~x1,~x2, t)

wobei gilt:

• ∆1 bzw. ∆2 . . . Laplaceoperator des 1. bzw. 2. Teilchens, kinetische Energie des 1.
bzw. 2. Teilchens
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• − h̄
2m∆1 bzw. − h̄

2m∆2 . . . Potential des 1. bzw. 2. Teilchens

• V (~x1,~x2, t) . . . potentielle Energie

Interpretation: Wahrscheinlichkeitsdichte: |ψ(~x1,~x2, t)|2d3x1d3x2 (für Teilchen 1 im Vo-
lumselement d3x1, für Teilchen 2 im Volumselement d3x2).

Normierung:
∫
|ψ(~x1,~x2, t)|2d3x1d3x2 = 1

für zeitunabhängige Potentiale: V ≡V (~x1,~x2)

Stationäre Lösungen: ψ(~x1,~x2, t) = e−
i
h̄ Et

ψ(~x1,~x2)

wobei E . . . totale Energie des Systems
zeitunabhängige Schrödingergleichung: Hψ(~x1,~x2) = Eψ(~x1,~x2)

Bosonen - Fermionen
Spin: s = 0,1,2, . . . s = 1

2 ,
3
2 , . . .

Beispiele: s = 0 : π︸︷︷︸
Pionen

,K s = 1
2 : e−, p︸︷︷︸

Protonen

, n︸︷︷︸
Neutronen

s = 1 : j, W+,W−︸ ︷︷ ︸
W-Bosonen

,Z, G︸︷︷︸
Gluonen

s = 2 : Graviton
erfüllen: Bose/Einstein-Statistik Fermi/Dirac-Statistik

kleben aneinander entfernen sich voneinander

Annahme:
Teilchen 1 sei im Zustand ψa(~x1) mit Quantenzahl a
Teilchen 2 sei im Zustand ψb(~x2) mit Quantenzahl b
in diesem Fall ist die Wellenfunktion ein Produktzustand für das Totalsystem:

ψ(~x1,~x2) = ψa(~x1) ·ψb(~x2)

einfaches Produkt→Wellenfunktion ist faktorisierbar
d.h. wie in der klassischen Physik können wir die Teilchen getrennt betrachten
(klassisch wäre: Teilchen 1 hat immer QZ a, nie b und Teilchen 2 hat immer QZ b, nie
a)
in QM: Teilchen 1 im Zustand ψA(~x1), Teilchen 2 im Zustand ψb(~x2)
fundamentaler Unterschied in QM: z.B. bei e− ist QZ a oder b nicht fix zuordenbar
Quanten sind prinzipiell ununterscheidbar - dem müssen wir Rechnung tragen durch
Superposition
Wellenfunktion:

ψ±(~x1,~x2) = N[ψa(~x1)ψb(~x2)±ψb(~x1)ψa(~x2)]

N . . . Normierung→ 1√
2

Spin
Bosonen→ ψ+, Fermionen→ ψ−
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Satz: Zwei Fermionen können nicht in ein und demselben Zustand sein.
Begründung:

wenn ψa = ψb wäre ⇒ ψ−(~x1,~x2) = N[ψa(~x1)ψa(~x2)−ψa(~x1)ψa(~x2)] = 0

Pauli-Verbot: (W. Pauli, 1925) Zwei e− im selben Spin-Zustand können sich nicht am
selben Ort aufhalten.
’am selben Ort’ entspricht ’im gleichen Orbital’
Also zwei Elektronen im gleichen Orbital müssen verschiedenen Spin haben.
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VI. EPR, Relativitätstheorie - Vorträge

15.12.

Vortrag zu EPR von Natalie Romanov, Film zur Quantenmechanik :-D

Vortragsskriptum siehe Anhang 1 (EPR_Paradoxon_Vortrag.pdf )
Folien des Vortrags siehe Anhang 2 (EPR_Paradoxon_Folien.pdf )
10.1.

Vortrag zu Einstein’s Relativitätstheorie von Philipp Köhler

Folien zum Vortrag siehe Anhang 3 (Relativitaet_Folien.pdf )
11.1.

Fortsetzung Vortrag

Anmerkung: Da Prof. Bertlmann das nächste Kapitel, Entanglement, mit Nummer
VII beschriftet hat, nahm ich an, dass die Vorträge und insbesondere EPR ein eigenes
Kapitel darstellen. So stimmt die Nummerierung wieder.
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VII. Entanglement

12.1.

verschränkte Quantensysteme; Bell-Ungleichung, Grundlage der Quanteninforma-
tion, Nonlocality (Nichtlokalität)

VII.1. Entanglement

Schrödinger (1935): Gesamtsystem aus 2 Teilsystemen

Definition: Verschränkter Zustand (→ später Entanglement): wenn Gesamtsystem
im wohldefinierten Zustand ist, die Teilsysteme aber nicht
betrachten System von 2 Teilchen mit Spin 1

2 (bzw. Photonen mit vertikaler und hori-
zontaler Polarisation)
⇒ Beschreibung mit Tensorprodukt
→ 4 unabhängige Tensorprodukt-Zustände (Basis 4-dim, 4 Produktzustände)

• | ↑〉⊗ | ↑〉 ≡ | ↑〉| ↑〉 ≡ | ↑↑〉

• | ↑〉⊗ | ↓〉

• | ↓〉⊗ | ↑〉

• | ↓〉⊗ | ↓〉

nennt man auch Separabel (Teilsysteme in genau definiertem Zustand, z.B. Alice im-
mer | ↑〉, Bob immer | ↓〉 ⇒ | ↑〉⊗ | ↓〉)
z.B. beim dritten Zustand ist | ↓〉 ∈ HA von Alice und | ↑〉 ∈ HB von Bob (Hilberträume)
allgemein: System mit 2 Freiheitsgraden
verschränkte Zustände: Superposition von Produktzuständen (Basis 4-dim Raum →
Basiswechsel)

|ψ±〉= 1√
2
(| ↑〉| ↓〉± | ↓〉| ↑〉)

|Φ±〉= 1√
2
(| ↑〉| ↑〉± | ↓〉| ↓〉)

Bell-Zustände
|ψ±〉 und |Φ±〉 sind wohldefinierte Quantenzustände → Zustände der Teilsysteme
sind nicht wohldefiniert
z.B. für |ψ±〉 mit Alice | ↑〉 und Bob | ↓〉 oder Alice | ↓〉 und Bob | ↑〉 (mit Wahrschein-
lichkeit je 50 %)
aber es gibt immer eine Korrelation der Messwerte
→ immer wenn Alice | ↑〉 findet, findet Bob | ↓〉
⇒ Grundlage der Quanteninformation
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Hilbertraum besteht entweder aus Separabel oder aus
Entanglement

H = HS∪HE

separable Zustände bilden eine konvexe Menge

VII.2. EPR-Paradoxon

(Einstein, Podolsky, Rosen) 1935
System mit 2 Teilchen⇒ Korrelation der Messwerte
⇒ EPR hat geschlossen, dass die QM unvollständig ist→
Realismus fehlt
QM ist vervollständigbar⇒ 30 Jahre später Bell

VII.3. Bell’sche Ungleichungen

J. S. Bell 1964:
EPR-Paradoxon (Debatte zwischen Einstein und Bohr) kann experimentell entschie-
den werden

Bell’sches Theorem: In bestimmtem Experiment sind alle LRT (Lokal Realistischen
Theorien) mit der QM unverträglich und diese Unverträglichkeit kann man mit der
Bell’schen Ungleichung zeigen.

Bell-Ungleichung: wir machen Spinmessungen bei Alice
und Bob für verschränkten Zustand
Observable von Alice (~a zeigt in Richtung des Stern-
Gerlach-Magneten):

AObs(~a)→ A(~a, λ︸︷︷︸
Realismus

) =±1, 0︸︷︷︸
kein Teilchen

Observable von Bob:
BObs(~b)→ B(~b,λ ) =±1,0

λ sagt, dass A(~a,λ ) schon vorher gegeben→ egal ob gemessen wird oder nicht
λ . . . verborgener Parameter, hidden variable theory - HVT
~σ ·~a← AObs(~a)
~σ ·~b← BObs(~b)
Erwartungswert für gemeinsame Spinmessung:

E(~a,~b) =
∫

dλρ(λ )A(~a,λ )B(~b,λ ) Bell’sche Lokalität

VII. Entanglement
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wobei ρ(λ ) . . . Wahrscheinlichkeitsfunktion; beliebige, normierte (
∫

dλρ(λ ) = 1) Ver-
teilungsfunktion
A(~a,λ ) - Alice, ist unabhängig von Bobs Messung, A unabhängig von~b und umgekehrt
⇒ Ungleichung für den Erwartungswert ableiten:

E(~a,~b)− (~a, ~b′︸︷︷︸
Bob ändert Richtung

) =
∫

dρA(~a,λ )B(~b,λ )−A(~a,λ )B(~b′,λ ) =

=
∫

dρ A(~a,λ )B(~b,λ )︸ ︷︷ ︸
|A·B|≤1

[1±A(~a′,λ )B(~b′,λ )]−
∫

dρ A(~a,λ )B(~b′,λ )︸ ︷︷ ︸
|A·B|≤1

[1±A(~a′,λ )B(~b,λ )]

(Nullsummenerweiterung) da gilt |A−B| ≤ |A|+ |B|

⇒ |E(~a,~b)−E(~a,~b′)| ≤
∫

dρ[1±A(~a′,λ )B(~b′,λ )]+
∫

dρ[1±A(~a′,λ )B(~b,λ )]

∫
dρ = 1 ⇒ |E(~a,~b)−E(~a,~b′)| ≤ 2±|E(~a′,~b′)+E(~a′,~b)|

⇒ |E(~a,~b)−E(~a,~b′)|+ |E(~a′,~b′)+E(~a′,~b)| ≤ 2

Bell-Ungleichung, gilt für alle LRT; wurde von Clauser, Horne, Shimony, Holt abge-
leitet→ CHSH-Ungleichung

in QM → Observable: ~σ ·~a⊗~σ ·~b
davon Erwartungswert im Zustand |ψ−〉:

EQM(~a,~b) = 〈ψ−|~σ~a⊗~σ~b|ψ−〉=−~a~b =−cos (α−β )︸ ︷︷ ︸
eingeschl. Winkel

wähle Bell-Winkel so, dass:

α−β = α
′−β

′ = 45◦ =
π

4
α−β

′ =
3π

4
α
′−β =

π

4

⇒ cos(
π

4
) =

√
2

2
cos(

3π

4
) =−

√
2

2
setzen ein in CHSH:

|−
√

2
2
−
√

2
2
|+ |−

√
2

2
−
√

2
2
| ≤ 2

QM 2
√

2≤ 2 LRT

WIDERSPRUCH⇒ QM verletzt Bell-Ungleichung
⇒ Realismus UND Lokalität in QM nicht gegeben⇒ QM nichtlokal (nonlocal)
Experiment: Zeilingergrumme (1998): Sexp = 2,73±0,002

Die Natur ist nichtlokal!

VII. Entanglement
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VIII. Dichtematritzen

17.1.

Wichtig für Statistik (Mischung von verschiedenen Zuständen)

VIII.1. Allgemeine Eigenschaften

• bisher: Zustand gegeben durch Vektor |ψ〉 ∈H (Hilbertraum)
→ reiner Zustand (nichts Klassisches dabei)
als Superposition |ψ〉= a| ↑〉+b| ↓〉

• erinnere: Erwartungswert von Observable A
〈A〉= 〈ψ|A|ψ〉 ⇒ wichtig für Experiment
= ∑n |cn|2an = A|ψn〉= an|ψn〉 an ∈ R

Um den Erwartungswert von A zu reproduzieren, ist folgende Def. naheliegend:

Definition: Physikalischer Zustand wird durch eine Dichtematrix definiert:

D = |ψ〉〈ϕ|

trD = ∑
n
〈n|ψ〉〈ϕ|n〉= 〈ϕ|∑

n
|n〉〈n︸︷︷︸
=Pn

|ψ〉= 〈ϕ|ψ〉

Pn . . . Projektionsoperator P2
n = P ∑

n
Pn = 1

ρ = |ψ〉〈ψ| (3×3)

⇒ Eigenschaften von ρ:

• ρ† = ρ ⇒ Eigenwerte sind reell 1

• trρ = 1 = 〈ψ|ψ〉

• ρ2 = ρ reiner Zustand

• ρ ≥ 0

⇒ Erwartungswert von A:

〈ϕ|= 〈ψ|A

tr |ψ〉〈ψ|︸ ︷︷ ︸
ρ

A = |ψ〉〈ϕ|

1† . . . adjungiert, entpricht T∗, also transponiert und komplex konjugiert
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〈A〉= trρA

Erwartungswert

〈A〉= ∑n |cn|2an n . . . Eigenwerte / Messwerte
|cn|2 . . . Wahrscheinlichkeit für an (Häufigkeit, mit der der Wert an vorkommt)

|cn|2 =
Nn

N

Gemischter Zustand

Es gibt N Objekte total: davon sind Ni im reinen Zustand |ψn〉.
Wahrscheinlichkeit für |ψ〉:

Pi =
Ni

N

Erwartungswert für Observable A:

〈A〉= ∑
i

pi〈ψi|A|ψi〉= ∑
i

piai

führt zur Definition der Dichtematrix:

ρ = ∑
i

pi|ψi〉〈ψi| Summe aus reinen Zuständen

mit 0≤ pi ≤ 1 ∑i pi = 1
Erwartungswert:

〈A〉= trρA

Eigenschaften - gemischte Dichtematrix

• ρ† = ρ

• trρ = 1

• ρ2 = ∑i p2
i |ψi〉〈ψi| 6= ρ

δ = trρ2 < 1 . . . Maß für Mischung
1
d ≤ δ ≤ 1 wobei d . . . Dimension des Vektorraums (d = 2 . . . Spin)
⇒ δ = 1

2 δmax . . . maximal gemischt

Gleichung für zeitliche Entwicklung von δ

→ von Neumann-Gleichung, gehen aus von Schrödingergleichung:

ih̄
∂

∂ t
|ψ〉= H|ψ〉 ad jung.→ −ih̄

∂

∂ t
〈ψ|= 〈ψ|H (Ht = H)

VIII. Dichtematritzen
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ih̄
∂

∂ t
ρ = ih̄(|ψ̇〉〈ψ|+ |ψ〉〈ψ̇|) = H|ψ〉〈ψ|+ |ψ〉〈ψ|H = Hρ−ρH = [H,ρ]

∂

∂ t
ρ =
−i
h̄
[H,ρ] ⇒ ρ(t)

Quantenaussagen zur Diffusionsgleichung

VIII.2. Beispiel Spin

2-dim Raum (2×2-Matritzen)

ρ ∈ HS Hilbert-Schmidt-Raum

jede allgemeine 2×2-Matrix ist gegeben durch 1,σx,σy,σz (Pauli-Matritzen)

→ ρ =
1
2
(1+ ~a︸︷︷︸

Gewichtung

+~σ)

trσi = 0 Bloch-Darstellung ~a . . .Bloch-Vektor, beschreibt Kugel

aus ρ2 = ρ - reiner Zustand

⇒ |~a|2 = 1⇒ reine Zustände auf Oberfläche der Kugel

aus ρ2 6= ρ

⇒|~a|2 < 1⇒ gemischte Zustände sind innen wenn |~a|2→ 0⇒ maximal gemischter Zustand

⇒ ρ ⇒ ρmax =
1
2

1

Beispiel: |~a|2 = 1 ~a|| z-Achse
ρ↑ =

1
2(1+σz) nach oben polarisiert

ρ↑ =

(
1 0
0 0

)
= | ↑〉〈↑ |

ρ↓ =
1
2(1−σz) =

(
0 0
0 1

)
= | ↓〉〈↓ |

ρmax =
1
2
(ρ↑+ρ↓)

Diese Zerlegung ist nicht eindeutig!
18.1.
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Dichtematrix für Spin 1
2

rein

ρ↑ = | ↑〉〈↑ |=
(

1 0
0 0

)
ρ↓ = | ↓〉〈↓ |=

(
0 0
0 1

)
gemischt

ρ = ∑
i

piρ
rein
i , wobei 0≤ pi ≤ 1, ∑

i
pi = 1

⇒ maximal gemischte Dichtematrix

ρmax =
1
2
(ρ↑+ρ↓) =

1
2

1

2

⇒ ρ
2
max =

1
4

1 =
1
2

ρmax 6= ρmax

⇒ gemischt
und Maß für Mischung:

δ = trρ
2
max =

1
4

tr1 =
1
2

max mix

Maximal gemischte Dichtematrix zerlegbar in:

ρmax =
1
2
(ρ↑+ρ↓)

= . . . andere Zerlegung (nicht eindeutig)

Satz

Ein und dieselbe gemischte Dichtematrix ist auf verschiedene Weise zu erhalten
(nicht eindeutig).

Physikalische Vorhersagen nur von Dichtematrix abhängig

〈A〉= trρA

Also physikalisch können wir verschiedene Zerlegungen die zur selben Dichtematrix
führen nicht unterscheiden.

Verschiedene Typen interpretieren wir als verschiedene Ausdrücke ein und dersel-
ben unvollständigen Information, die wir über das System haben.
Das führt zum Entropiebegriff in der Quantenphysik (diese misst den Grad der Un-
bestimmtheit in einem Quantensystem).

21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Einheitsmatrix
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Satz (Thirring) In gemischtem Zustand haben wir nur teilweise Information über das
System. Die Entropie misst, wie viel Information zur maximalen Information fehlt
(wie weit ρmix von ρrein entfernt ist).

von Neumann Entropie:

S(ρ) =−trρ log2(ρ) log2(x) =
lnx
ln2

(2-dim Raum)

S(ρ) =−∑
i

λi log2 λi λi . . .Eigenwerte von ρ

Beispiel: ρmax =
1
21 max mix

S(ρmax) =−1
2 log2

1
2 −

1
2 log2

1
2 =−1

2 · (log2 1− log2 2) ·2 = 1
2 ·2 = 1

Beispiel: reiner Zustand: |α〉= 1√
2
(| ↑〉+ eiα | ↓〉)

⇒ ρα = |α〉〈α|= 1
2

(
1 e−iα

eiα 1

)
diag→

(
1 0
0 0

)
⇒ S(ρα) =−1 · log2(1)︸ ︷︷ ︸

=0

−0 · log2(0) = 0

VIII. Dichtematritzen



Theoretische Physik L2 - Prof. Bertlmann 71

Teil II.

Statistische Physik
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I. Thermodynamik

I.1. Wahrscheinlichkeiten

Zufälliges Ereignis:

• Ein Ereignis kann unter bestimmten Bedingungen eintreten oder nicht.

• Die Wahrscheinlichkeit ist eine quantitative Abschätzung eines zufälligen Er-
eignisses.

• Bei n Ereignissen tritt ein Ereignis mit Wahrscheinlichkeit w = 1
n auf.

• m gleiche Ereignisse treten mit Wahrscheinlichkeit w = m
n auf.

• w = 0 . . . unmöglich, w = 1 . . . sicher

• Wahrscheinlichkeiten können addiert (irgend eines von mehreren Ereignissen)
und multipliziert (gleichzeitiges Auftreten von mehreren Ereignissen) werden

Beispiel:

5 schwarze, 3 grüne und 2 rote Kugeln:

• Wahrscheinlichkeit für 1 grüne Kugel: w = 3
10 = 0,3

• Wahrscheinlichkeit für 1 grüne oder 1 rote Kugel: w = 3
10 +

2
10 = 0,5

• Wahrscheinlichkeit für grüne und dann rote Kugel: w = 3
10 ·

2
10 = 0,06

wiederholte Versuche:

n Versuche, bei jedem Versuch ist die Wahrscheinlichkeit für ein Ereignis w
Wahrscheinlichkeit, dass ein bestimmtes Ereignis m mal auftritt:

wm,n =

(
n
m

)
wm(1−w)n−m (Binomialverteilung), wobei

(
n
m

)
=

n!
m!(n−m)!

für große n,m ist die Stirling-Formel eine gute Approximation (auch schon bei z.B.
n = 20 ganz gute Approxiomation):

n!
n→∞
≈
√

2πnn+ 1
2 e−n

Binomialverteilung m, n groß→ Gaußverteilung
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⇒ wm,n =
1√

2πσ
e−

x2

2σ2

wobei σ =
√

nw(1−w) . . . Breite der Gaußverteilung, x = m−nw, (x′ = x
σ
= m−nw

σ
)

I.2. Brownsche Bewegung

Robert Brown (Botaniker): Hat die Bewegung von mikroskopisch kleinen Teilchen in
Flüssigkeit untersucht (1827).

Erklärung: Albert Einstein, 1905 - Brownsche Bewegung als Test für molekularkine-
tische Theorie der Wärme

J. Perrin 1908: Experiment, Brownsche Bewegung gemessen, Einstein-Relationen be-
stätigt

19.1.

Modell: 1-dim

1. Teilchen zur Zeit t = 0 am Ort x = 0

2. innerhalb Zeitspanne t = τ legt Teilchen Wegstrecke x =±b zurück

3. jeder neue Schritt vom vorherigen Schritt unabhängig

4. jede Richtung + oder − gleich wahrscheinlich

betrachten folgende Orte: xm,n(t = nτ) = (2m−n) ·b
Wahrscheinlichkeit, das Teilchen am Ort xm,n zur Zeit

t = nτ zu finden (Binomialverteilung):

w(xm,n) =

(
n
m

)
wm(1−w)n−m

nach jedem Schritt w = 1
2

w(xm,n) =

(
n
m

)
(
1
2
)m(

1
2
)n−m⇒ w(xm,n) = 2−n

(
n
m

)
Annahme: n,m groß, auch n−m groß ⇒ Binomialverteilung
→Gauß-Verteilung (verwenden Stirling-Formel: n!≈

√
2πnn+ 1

2 e−n)

BV → GV: wm,n =
1√

2πσ
e−

x2
2 , wobei σ =

√
nw(1−w) x =

m−nw
σ

I. Thermodynamik
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hier: n = t
τ

m−n =
xm,n

b w = 1
2 x = 2m−n√

n σ =
√

n
2

⇒ w(x) =
1√
2π

2√
n

e−
(2m−n)2

2n ⇒ w(x) =

√
2τ

πt
· e−

τ

2b2
x2
t

τ,b . . . fix vorgegeben, w . . . Wahrscheinlichkeit, Teilchen am Ort x zur Zeit t zu finden

I.3. Diffusion

Übergang von mikro- in makro-
Physik: sehr viele Teilchen, jedes
führt Brownsche Bewegung aus,
es gelten Gesetze für große Zah-
len
→ stochastische Bewegung,
Wahrscheinlichkeitsdichte σ ,
Teilchendichte ρ

Diffusion: Durchmischung von zwei Substanzen bis zur vollständigen Durchmischung.
Bereiche höhere Konzentration gehen über in Bereiche niedriger Konzentration.
Gehen aus von der Wahrscheinlichkeit für große Zahl von Teilchen (diskrete Punkte-
verteilung→ kontinuierliche Punkteverteilung), also ∑w(xm,n)→

∫
dxσt(x)

normiert
= 1

w(xm,n)→ σt =
1√

π4Dt
· e−

x2
4Dt wobei D :=

b2

2τ
. . .Diffusionskonstante

σt(x) ist Wahrscheinlichkeitsdichte, ist normiert (
∫

σt(x) = 1)
Wahrscheinlichkeitsdichte σt(x) identifizieren wir physikalisch mit Teilchendichte ρt(x)
σt(x)≡ ρt(x) ist Lösung der Diffusionsgleichung:

d
dt

ρt(x) = D
d2

dx2 ρt(x)

Lösung: ρt(x) = 1√
π4Dt
· e− x2

4Dt für Anfangsbedingung bei t = 0 sei ρt=0(x) = δ (x) (Delta-
Funktion); allgemeine Lösung:

ρt(x) =
1√

π4Dt
·
∫

∞

in f ty
dx′e−

(x−x′)2
4Dt f (x′) wobei ρt=0(x) = f (x)

in 3 Dimensionen:

ρt(~x) =
1√

(π4Dt)3
· e−

~x2
4Dt

I. Thermodynamik
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(QM von Neumann Gleichung)

d
dt

ρt(~x) = D∆ρt(x) - Diffusionsgleichung

(identisch mit Wärmeleitungsgleichung)
erinnern an Kontinuitätsgleichung: Mechanik - Massenerhaltung:

ρ̇ +~∇~j = 0

ist erfüllt, wenn Def. Diffusionsdichte

~jD =−D~∇ρ
∇2=∆⇔ Diffusionsgleichung

(1. Fick’sches Gesetz) (2. Fick’sches Gesetz)

I.4. Beziehung zur Theorie der Wärme

Wärme→ Eigenbewegung der Teilchen
Diffusion geschieht aufgrund der thermischen Eigenbewegung der Teilchen
Wärmeleitung ist äquivalent zum Diffusionsprozess
Diffusionsgleichung ≡Wärmeleitungsgleichung
Konzentrationsausgleich durch Diffusion äquivalent zu Wärmeausgleich → thermi-
sches Gleichgewicht
betrachten Verhalten von Brown’schen Teilchen unter einer Kraft ~F :
Bremswirkung durch Teilchen⇒ Teilchen erreicht Grenzgeschwindigkeit~v = B~F , wo-
bei B . . . Beweglichkeit; v∼ F im Medium, keine freie Bewegung!

Definition Beweglichkeitsstromdichte: ~jB = ρ~v ρ . . . Teilchendichte ~jB = ρB~F

Kraft als Potential V : ~F =−~∇V ⇒ ~jB =−ρB~∇V
es erfolgt Gleichgewicht, wenn Balance zwischen Beweglichkeit und Diffusion herrscht:

⇒ ~jB +~jD = 0

erinnernd Diffusionsstrom: ~jD =−D~∇ρ, wobei D . . . Diffusionskonstante
interessieren uns für Teilchenzahldichte ρ im Gleichgewicht:

⇒−ρ~B∇V −D~∇ρ = 0

das ist eine Differentialgleichung für ρ, lösen:
∫ ~∇ρ

ρ
=− B

D
∫ ~∇V

lnρ =−B
D

V + lnc⇒ ρ(x) = c · e−
B
DV (x)

Die Teilchendichte ist also abhängig vom Potential, dass die Teilchen der Brownschen
Bewegung haben.

I. Thermodynamik
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Vergleichen Resultat mit molekularkinetischer Theorie der Wärme, Wahrscheinlich-
keitsdichte der Mikrozustände im thermischen Gleichgewicht ist gegeben durch die
Boltzmann-Verteilung: ρ = c · e− e

kT , wobei E . . . Energie des Systems, T . . . Temperatur,
k . . . Boltzmannkonstante

aus Vergleich folgt: B
D = 1

kT ⇒ B =
D
kT

(Einstein’sche Beziehung)

also Beweglichkeit ist Diffusion durch Temperatur; bei kleinen Temperaturen steigt
B, damit wird ~jB groß (’Supraleitung’)
⇒ erhalten von Thermodynamik unabhängige Bestimmung der Boltzmann-Konstante
Experiment: Perrin (NP 1926), hat Einstein-Beziehung bestätigt!

I. Thermodynamik
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II. Entropie

fundamentale Thermodynamik, Zustandsgröße, beschreibt Zahl der Mikrozustände,
die durch bestimmten Makrozustand realisiert sind
Entropie ist extenisve Größe, wenn z.B. ein Volumen V in V1 (5 Teilchen) und V2 (kein
Teilchen) geteilt ist, ist die Entropie kleiner, als wenn die Teilchen auf das ganze
Volumen V verteilt sind. Entropie steigt wenn das Volumen größer wird.
Entropie - thermodynamische Sicht, Clausius 1865 (phänomenologisch)
statistische Sicht, Boltzmann 1877, Maß für Zustandsdichte der Mikrozustände

II.1. Entropie - thermodynamische Formulierung

dS =
δQ
T

bei reversiblen Vorgängen

wobei S . . . Entropie, dS . . . totales Differential, δQ . . . Wärmeübertragung (klein) (+ bei
Zufuhr, - bei Abfuhr), T . . . Temperatur
bei irreversiblen Vorgängen: dS = δQ

T + δWdiss
T , δWdiss ≥ 0 . . . dissipative Arbeit, die dem

System zugeführt wird (Reibungsverluste)

2. Hauptsatz der Wärmelehre: (Clausius) Es gibt keinen Kreisprozess (d.h. zyklisch
arbeitende Maschine), mit einziger Wirkung, Wärme vom kälteren zum wärmeren
Reservoir zu transportieren

25.1. Nullpunkt der Entropie ist festgelegt durch.

3. Hauptsatz der Wärmelehre: Die (klassische) Entropie wird beim absoluten Null-
punkt der Temperatur T = 0 null, also: S = 0⇐ T = 0
⇒ der absolute Nullpunkt kann nicht in endlich vielen Schritten erreicht werden:

A . . . extensive Größe; ⇒ absoluter Nullpunkt nicht erreichbar. (derzeit ca. 10−9 K
erreicht!)
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1. Hauptsatz der Wärmelehre: dU = δQ+δW (Änderung der inneren Energie = Wärme-
änderung + Arbeit); U . . . innere Energie, W . . . Arbeit (am oder vom System geleistet)
Bemerkung: wenn dU = 0 - adiabatische Verschiebung der Wände: V → V + dV S→
S+dS δW =−pdV

⇒ δQ =−δW ⇒ δQ = pdV ⇒ Entropie dS =
δQ
T

=
pdV
T

Zustandsgleichung für ideale Gase: p ·V = NkT ⇒ p = NkT
V

⇒ dS = Nk
dV
V

∫
dS =

∫
Nk

dV
V
⇒ S = Nk lnV ⇒ S = k lnV N

V N := Ω⇒ S = k lnΩ Boltzmann

II.2. Entropie - statistische Formulierung

Makrozustand wird erklärt durch das Verhalten der Mikrozustände der Atome (Mi-
krokomponenten).

Mikrozustände: Gegeben durch Angabe aller Orte und Impulse der Teilchen. (~q,~p) . . .
Phasenpunkt, Punkt im Phasenraum (2 · 3 = 6) ·N Dimension (N . . . Anzahl der Teil-
chen im System).
Es gelten die klassisch kanonischen Gleichungen der Mechanik (z.B für zeitliche Ent-
wicklung). Die Zeitliche entwicklung führt für jeden Punkt im Phasenraum zu ei-
ner Phasentrajektorie. Alle möglichen zugänglichen Phasentrajektorien bilden das
Phasenraumvolumen Ω (bei gegebenen Makro-Randbedingungen).

Entropie: ist ein Maß für das zugängliche Phasenraumvolumen, unter gegebenen
Makro-Randbedingungen, also ein Maß für die Anzahl der Mikrozustände.
Je größer die Entropie ist, desto unbestimmter sind die Mikrozustände, also desto
weniger Information über die Mikrozustände ist vorhanden.

Fundamentales Postulat der statistischen Physik: Jeder Mikrozustand in einem abge-
schlossenen System im Gleichgewicht kommt mit gleicher Wahrscheinlichkeit vor.⇒
abgeschlossenes System hat maximalen Energiewert (Prinzip der maximalen Ener-
gie).

Boltzmann-Formel (1877):
S = k · lnΩ

wobei k . . . Boltzmann-Konstante, Ω . . . Phasenraumvolumen
S∼ N extensive Größe, A,B unabhängige Systeme:

ΩAvereinigtB = ΩA ·ΩB⇒ SAvereinigtB = SA +SB

II. Entropie
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2. Hauptsatz modernere Formulierung: Ist ein System zu 2 Zeiten ’vorher’ und ’nach-
her’ von der Umgebung isoliert, d.h. übt es keinen dauernden Einfluss auf die Umge-
bung aus, dann gilt im Gleichgewicht, dass δS≥ 0. Also ∆S = S(t2)−S(t1)≥ 0 für t2 > t1,
also warm→ kalt, und nicht umgekehrt.
Spin Beispiel: 5N Spin 1

2 , davon 3N Spin ↑, 2N Spin ↓; Frage: Entropie des Spin-
Systems (angenommen N = 1⇒ 5 Spins): Möglichkeiten: ↑↑↑↓↓ ↑↑↓↓↓ ↑↓↓↓↓ . . .⇒
10 Möglichkeiten

⇒ Phasenraumvolumen Ω =

(
5N
2N

)
=

(5N)!
(2N)!(3N)!

für N→ ∞: Stirling-Formel (n!≈
√

2πnn+ 1
2 e−n, für n→ ∞ trägt nur nn bei)

⇒Ω =
5N5N

2N2N3N3N = e5N ln5+lnNe−2N ln2+lnNe−3N ln3N = e−5N(− ln5+ 2
5 ln2+ 3

5 ln3)

(weil lnN nicht beiträgt - kann man vernachlässigen, außerdem Trick:− ln5=−2
5 ln5−

3
5 ln5)

⇒Ω = e−5N( 2
5 ln 2

5+
3
5 ln 3

5 )⇒ lnΩ =−5N(
2
5

ln
2
5
+

3
5

ln
3
5
)

binäre Entropiefunktion: h(η) = η lnη + (1− η) ln(1− η), für η = 2
5 oder 3

5 ⇒ lnΩ =

−5Nh(η),⇒ S =−5N · k ·h(2
5)⇒ S = 3,36Nk

(bei Beispiel 2) ∆S = 207k)
26.1.

II. Entropie
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III. Thermodynamische Zustandsgrößen
und Verteilungen

III.1. Temperatur als Gleichgewichtsgröße

Geg.: 2 Systeme A und B, die voneinander isoliert sind. Jedes System sein in seinem
inneren (thermodynamischen) Gleichgewicht.
Charakterisieren Systeme durch: innere Energien UA,UB und Entropien SA,SB
bringe Systeme in Kontakt:⇒ es gibt Energiefluss zwischen den Systemem
vorher UA→UA +u nachher vorher UB→UB−u nachher (u klein)
⇒ es gibt auch eine Entropieänderung (Entropie als Funktion der inneren Energie
gesehen: S = S(U))
vorher: SA = S(UA)→ S(UA +u) nachher vorher SB = S(UB)→ S(UB−u) nachher
(vorher: Systeme isoliert, nachher: Systeme in Kontakt)
Gesamtentropie: wird maximal
S = SA +SB→ max., wenn die Steigung der Tangente 0 ist, da S = S(U)⇒ dS

dU = 0

Also im Thermodynamischen Gleichgewicht ist die Entropie maximal, ⇒ dS
dU

= 0 ⇒

dSA

dUA
=

dSB

dUB
(kein Minus weil einmal +u, einmal −u)

(S = SA(UA +u)+SB(UB−u)
Taylor
= SA(UA)+SB(UB)+(

dSA

dUA
− dSB

dUB
)︸ ︷︷ ︸

!
=0

u+ . . .)

legt nahe, eine thermodynamische Gleichgewichtsgröße zu definieren:

(absolute) Temperatur T :=
(

dS(U)

dU

)−1

0. Hauptsatz der Thermodynamik: Es gibt bei Energieaustausch von zwei Systemen
eine Gleichgewichtsgröße, nämlich die Temperatur. Sind A und B im Gleichgewicht, B
und C im Gleichgewicht⇒ A und C sind im Gleichgewicht (also die Relation ’Systeme
sind im Gleichgewicht’ ist transitiv ;-))

III.2. Boltzmann-Verteilung

Geg.: großes thermodynamisches System mit bestimmten Makro-Randbedingungen
(in bestimmtem Makrozustand).
Alle zugehörigen Mikrozustände nehmen ein bestimmtes Phasenraumvolumen Ω0
ein (→ Anzahl der möglichen Mikrozustände für diesen Makrozustand).
aus Entropie S = k · lnΩ folgt: Ω0 = e

S(U)
k
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betrachten kleines Teilsystem mit Energie ε j mit ε0 = 0
Aufteilung: kleines System + großes Restsystem, kleines System gibt Energie ab
totale Energie: U = ε j︸︷︷︸

kleines Teilsystem: j

+ (U− ε j)︸ ︷︷ ︸
großer Rest

betrachte alle möglichen Aufteilungen des Phasenraumvolumens: Ω = ∑ j Ω j
für großes Restsystem: Entropie

S(U− ε j) = S(U)− dS
dU︸︷︷︸
T−1

ε j + . . . ∀ j

für ein bestimmtes Phasenraumvolumen Ω j folgt:

Ω j = e
1
k S(U−ε j) = e

S(U)
k · e−

dS
dU

ε

k

⇒ Ω j = e
S(U)

k · e−
ε j
kT

Phasenraumvolumen ∼Wahrscheinlichkeit der Mikrozustände
dann gilt Gleichverteilung der Wahrscheinlichkeiten der Mikrozustände

w(ε j)

w(ε0)
=

Ω j

Ω0
= e

S(U−ε j)
k eS(U)k = e−

ε j
kT =

w(ε j)

w(ε0)
Boltzmann-Verteilung

mit β =
1

kT
⇒

w(ε j)

w(ε0)
= e−βε j

III.3. Kanonischer Zustand

gehen aus von Systemen, bei denen die Boltzmann-Verteilung gilt (isoliert, kleiner
Energieaustausch)
wollen Summe der Wahrscheinlichkeiten auf 1 normieren, dazu ist es günstig, die
Zustandssumme einzuführen

Z = ∑
j

e−βε j

⇒ Einzelwahrscheinlichkeit:
w(ε j) =

1
Z

e−βε j

Ein Zustand mit dieser Verteilung wird kanonischer Zustand genannt.
Bemerkung: Das ist der Zustand eines kleinen Teilsystems (Totalsystem ist in einem
anderen, mikrokanonischen Zustand).
Zustandssumme ist wichtig für Berechnungen des Systems, z.B. innere Energie: lo-
garithmische Ableitung von Z:

− ∂

∂β
lnZ =

1
Z ∑

j
ε je−βε j = ∑

j
ε jw(ε j) = 〈ε〉=U

III. Thermodynamische Zustandsgrößen und Verteilungen
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IV. Zusammenfassung der Statistik

IV.1. Thermodynamische Gesamtheiten

1. Vollkommen abgeschlossenes System: Gleichgewicht bei fester Energie U und
bei fester Teilchenzahl N, so ein Zustand wird mikrokanonische Gesamtheit ge-
nannt (eigentlich Idealisierung, in Realität nicht vorhanden)

2. Austausch von Energie möglich: Gleichgewicht bei mittlerer Energie 〈ε〉, Teil-
chenzahl konstant, so ein Zustand wird kanonische Gesamtheit genannt (häu-
figster Fall)

3. System mit durchlässiger Membran, Austausch von Energie und Teilchen mög-
lich: Gleichgewicht bei mittlerer Teilchenzahl 〈N〉, dieser Zustand wird großka-
nonische Gesamtheit genannt

IV.2. Thermodynamische Hauptsätze

0. Hauptsatz: Es gibt eine thermodynamsiche Zustandsgröße, nämlich die Tempera-
tur T , 2 Systeme sind im Gleichgewicht, wenn ihre Temperaturen gleich sind (TA = TB).

1. Hauptsatz: Es gibt eine Zustandsgröße, genannt innere Energie U , die Änderung
dieser Energie ist die zu- oder abgeführte Wärme plus der am System geleisteten
Arbeit (dU = δQ+δW ).

2. Hauptsatz: Es gibt eine Thermodynamische Zustandsgröße, die Entropie S, die im
Mittel immer ansteigt (sofern keine Energie zugeführt wird). Für reversible Prozesse
gilt dS = δQ

T , dS(t)
dt ≥ 0 (Wärme vom wärmeren zum kälteren).

3. Hauptsatz: Die Entropie S ist null beim absoluten Nullpunkt T = 0, dieser kann
nicht mit endlich vielen Schritten erreicht werden.
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